Image Segmentation Analysis Using Otsu Thresholding and Mean Denoising for the Identification Coffee Plant Diseases
DOI:
https://doi.org/10.34288/jri.v6i1.261Keywords:
coffee, mean denoising, otsu thresholding, leaf rust, image segmentationAbstract
In Indonesia, coffee is one of the plantation products with a relatively high level of productivity and is a source of foreign exchange income for the country. However, unfortunately, certain factors can threaten productivity and quality in cultivating coffee plants, one of which is rust leaf disease. This disease causes disturbances in photosynthesis, thereby reducing plant yields. Therefore, to maintain and control productivity in coffee cultivation, this research carried out the process of observing coffee leaf images through segmentation using the Otsu Thresholding and Mean Denoising methods. The entire series of processes in this research was carried out using the Python programming language and succeeded in providing output in the form of image comparisons showing areas affected by Rust Leaf disease using the Otsu thresholding method alone and the Otsu thresholding method combined with a non-local means denoising algorithm. The test results prove that the Otsu thresholding method with the non-local means denoising algorithm has a smaller MSE value. It is the most optimal method for handling coffee leaf disease image segmentation with an accuracy level of 88%. It is hoped that this research can support farmers in providing insight into early detection of coffee plant diseases and increasing productivity through visual analysis.
Downloads
References
Alfian, D. (2021). Sistem Pendukung Keputusan Berbasis Metode Analytical Hierarchy Process (AHP) Dalam Pemilihan Biji Kopi Berkualitas. INTECOMS: Journal of Information Technology and Computer Science, 4(2), 192–201. https://doi.org/10.31539/intecoms.v4i2.2837
Ardiansyah, A., & Hasan, N. F. (2023). Deteksi dan Klasifikasi Penyakit Pada Daun Kopi Menggunakan Yolov7. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 12(1), 30–35. https://doi.org/10.32736/sisfokom.v12i1.1545
Asyhari, A., Sari, F. Y., Efendi, N. R., Nurjanah, D., Septianti, O., Putra, B., Maulana, D., Intan, D., Bagas P., A., Apriyadi, N., Benard, M., Farida, F., Syafaat, A., & Veronika, I. (2020). Pemberdayaan Kelompok Petani Kopi Karang Rejo untuk Meningkatkan Pemanfaatan Daun Kopi Menjadi Layak Konsumsi. Jurnal Pengabdian …, 5(1), 279–286. http://ppm.ejournal.id/index.php/pengabdian/article/view/251
Fibriani, I., Widjonarko, Sarwono, C. S., & Dwika, F. (2020). Deteksi Penyakit Brown Eye Spot pada Daun Kopi Menggunakan Metode Euclidean Distance dan Hough Transform. Journal Of Electrical Engineering And Technology, 1(1).
Hakim, L., Kristanto, S. P., Shodiq, M. N., Yusuf, D., Setiawan, W. A., Informatika, T., Banyuwangi, N., Raya, J., & Km, J. (2020). Segmentasi Citra Penyakit Pada Batang Buah Naga Menggunakan Metode Ruang Warna L*a*B*. Seminar Nasional Terapan Riset Inovatif (SENTRINOV) Ke-6 ISAS Publishing Series: Engineering and Science, 6(1), 728–736.
Helmy Abdillah, M., Aufar, Y., & Romadoni, J. (2023). Deteksi Penyakit Berbasis Convolutional Neural Network (CNN) dan Peninjauan Kesuburan Tanah Sebagai Upaya Peningkatan Hasil Tanaman Kopi Robusta Di Desa Lok-Tunggul Kabupaten Banjar. Jurnal Abdi Insani, 10(2), 1059–1068. https://doi.org/10.29303/abdiinsani.v10i2.803
Marina, I., Howara, D., & Sulmi, S. (2022). Manajemen Persediaan Bahan Baku Kopi Bubuk Pada Ukm Sidole 986 Di Kota Palu. Jurnal Pembangunan Agribisnis (Journal of Agribusiness Development), 1(3), 83–90. https://doi.org/10.22487/jpa.v1i3.1524
Pratita, D. G., Selviyanti, E., & Sabran, S. (2022). Pelatihan Pembuatan Lilin Aromaterapi Berbahan Baku Kopi Pada Ibu PKK di Dusun Krajan, Patrang. Journal of Community Development, 3(1), 1–7. https://doi.org/10.47134/comdev.v3i1.57
R. Lumbanraja, F., Rosdiana, S., Sudarsono, H., & Junaidi, A. (2020). Sistem Pakar Diagnosis Hama Dan Penyakit Tanaman Kopi Menggunkan Metode Breadth First Search (Bfs) Berbasis Web. Explore: Jurnal Sistem Informasi Dan Telematika, 11(1), 1. https://doi.org/10.36448/jsit.v11i1.1452
Ramadhan, M., Anwar, B., Gunawan, R., & Kustini, R. (2021). Pada Tanaman Kopi Menggunakan Metode. Sistem Pakar Untuk Mendiagnosa Penyakit Pada Tanaman Kopi Menggunakan Metode Teorema Bayes, 4307(June), 115–121.
Ratnawati, L., & Sulistyaningrum, D. R. (2019). Penerapan Random Forest untuk Mengukur Tingkat Keparahan Penyakit. 8(2).
Saputra, F. E., Cahya Wihandika, R., & Widodo, A. W. (2021). Penentuan Kualitas Biji Kopi Menggunakan Local Ternary Patterns Dan RGB-HSV Color Moment Dengan Learning Vector Quantization. 5(6), 2299–2307. http://j-ptiik.ub.ac.id
Siska, R. K. W., Lubis, L., & Lisnawati, L. (2018). Serangan Karat Daun Kopi (Hemileia vastatrix B et Br) pada Tanaman Kopi Arabika di Perkebunan Rakyat Kabupaten Mandailing Natal Sumatera Utara. Talenta Conference Series: Agricultural and Natural Resources (ANR), 1(1), 82–86. https://doi.org/10.32734/anr.v1i1.101
Sugiarti, L. (2019). Identifikasi Hama Dan Penyakit Pada Tanaman Kopi Di Kebun Percobaan Fakultas Pertanian Universitas Winaya Mukti. Agro Wiralodra, 2(1), 16–22. https://doi.org/10.31943/agrowiralodra.v2i1.27
Sukmawati, L., & Sadikin, R. (2023). Segmentasi Jalan Berlubang Citra Jalan Raya Menggunakan Metode Thresholding Dan K-Means. Jurnal Teknik Komputer, 9(2), 89–95. https://doi.org/10.31294/jtk.v9i2.15211
Windiawan, R., Suharso, A., & Artikel, S. (2019). Identifikasi Penyakit pada Daun Kopi Menggunakan Metode Deep Learning VGG16 INFO ARTIKEL ABSTRAK. Exploreit, 13(2), 9–16. https://doi.org/10.35891/explorit
Yasin, M. A. N., & Al Maki, W. F. (2022). Klasifikasi Penyakit Pada Tanaman Kopi Menggunakan K-nearest Neighbor Dioptimasi Dengan Genetic Algorithm. EProceedings of Engineering, 9(3), 1913–1918.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ami Rahmawati, Ita Yulianti, Siti Nurajizah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.