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Abstract 
Cats are widely kept as companion animals and exhibit substantial breed level variation in appearance and 
behavior that influences their care. This study develops a lightweight, image based classifier for identifying 
twelve common cat breeds using transfer learning on the EfficientNet-B0 backbone. Experiments 
contrasted four optimization algorithms (SGD, AdaGrad, RMSProp, and Adam) to identify the training 
strategy that balances convergence speed and generalization. Model effectiveness was measured with 
confusion matrix analysis and common classification indicators (accuracy, precision, recall, and F1-score). 
The best performing setup, EfficientNet-B0 fine tuned with the Adam optimizer attained 92% training 
accuracy, 89% validation accuracy, and 88% on the held out test partition. Subsequently, we integrated the 
trained model into a Flask web application, backed by an SQLite database, and conducted black-box testing 
to assess its functional reliability. All system functions met specifications and runtime predictions 
corresponded closely to ground truth labels. This platform provides a rapid and accurate tool for cat owners 
and enthusiasts to identify breeds in real-world scenarios, highlighting the usefulness of transfer learning 
in a streamlined web based implementation. 
 
Keywords: Cat breed classification; EfficientNet-B0; transfer learning; Flask web applicaton 
 
 

Abstrak 
Kucing banyak dipelihara sebagai hewan pendamping dan menunjukkan variasi antar ras yang signifikan 
dalam penampilan serta perilaku yang memengaruhi kebutuhan perawatannya. Penelitian ini 
mengembangkan sebuah klasifikator citra ringan untuk mengidentifikasi dua belas ras kucing umum dengan 
memanfaatkan pendekatan transfer learning pada backbone EfficientNet-B0. Eksperiment membandingkan 
empat algoritma optimisasi (SGD, AdaGrad, RMSProp, dan Adam) untuk menentukan strategi pelatihan yang 
menyeimbangkan kecepatan konvergensi dan kemampuan generalisasi. Kinerja model diukur menggunakan 
anlisis confusion matrix dan metrik klasifikasi standar (akurasi, presisi, recall, dan F1-score). Konfigurasi 
terbaik, yakni EfficientNet-B0 yang di fine tuned dengan optimizer Adam, mencapai akurasi pelatihan 92%, 
akurasi validasi 89%, dan akurasi 88% pada partisi uji terpisah. Model yang terlatih diekspor dan 
diintegrasikan ke dalam aplikasi web sederhana berbasis Flask dengan penyimpanan SQLite, kemudian diuji 
menggunakan skema blackbox untuk menilai keandalan fungsional. Seluruh fungsi inti memenuhi spesifikasi 
dan prediksi runtime menunjukkan kesesuaian yang tinggi dengan label sebenarnya. Sistem ini menawarkan 
alat cepat dan praktis bagi pemilik serta penggemar kucing untuk mengidentifikasi ras di lingkungan nyata, 
sekaligus menyoroti manfaat transfer learning pada implementasi web yang ringkas.  
 
Kata kunci: Klasifikasi ras kucing; EfficientNet-B0; transfer learning; aplikasi web Flask 
 
 

INTRODUCTION 
 
Cats rank among the world’s most beloved 

companion animals, including in Indonesia, where 
47% of survey respondents reported keeping cats 
as pets (Rakuten Insight, 2021). This popularity 
stems from cats’ adaptability to diverse living 
environments, their relatively low maintenance 

requirements, and the intense emotional bonds 
they form with their owners. As domestic cats 
encompass a variety of breeds, each characterized 
by distinct coat patterns, body shapes, and 
behavioral traits, accurate breed identification 
poses a challenge for many pet owners. 

Several studies have underscored the 
importance of breed-specific knowledge for health 



P-ISSN: 2656-1743 | E-ISSN: 2656-1735 
DOI: https://doi.org/10.34288/jri.v8i1.417 

JURNAL RISET INFORMATIKA 
Vol. 8, No. 1. December 2025 

Accredited rank 4 (SINTA 4), excerpts from the decision of the DITJEN DIKTIRISTEK No. 230/E/KPT/2023 

 

 
12 

 

 

and welfare. For instance, (Salonen, et al., 2019)  
reported that Persian and Maine Coon cats exhibit 
elevated risk factors for polycystic kidney disease, 
whereas (Vapalahti et al., 2016) demonstrated 
significant behavioral differences, such as 
aggression levels and activity patterns across 
breeds. Inaccurate breed recognition may therefore 
lead to suboptimal nutritional planning and delayed 
detection of hereditary conditions. Leading pet food 
manufacturers, such as Royal Canin, have 
responded by formulating breed-tailored diets, 
further emphasizing the practical necessity of 
precise breed determination (Royal Canin, 2024). 
However, current manual identification, relying on 
visual inspection by pet owners or non specialist 
veterinarian sis inherently subjective, time 
consuming, and prone to error. To overcome these 
limitations and ensure the accuracy demanded by 
breed specific care, a more robust and objective 
approach is imperative. 

To address this need for accurate, efficient, 
and objective identification, automated image 
based classification systems have gained traction, 
leveraging advances in Artificial Intelligence (AI) 
have enabled automated image classification 
pipelines based on convolutional architectures to 
deliver makedly improve results on a broad 
spectrum of computer vision problems, from 
medical diagnosis (e.g., detection of diabetic eye 
disease; (Albelaihi & Ibrahim, 2024) to animal 
breed recognition for robust object recognition. 
Surveys of the field highlight a wide range of CNN 
families (e.g., VGG, ResNet, Inception, MobileNet, 
EfficientNet) and summarize common challenges, 
such as data scarcity, class imbalance, and 
overfitting, as well as their remedies, including 
transfer learning and data augmentation (Alzubaidi 
et al., 2021; Zhao et al., 2024). Transfer learning 
allows CNN models pretrained on large datasets to 
be adapted to smaller, domain specific image 
collections, improving accuracy while lowering 
computational demans (Janiesch, Zschech, & 
Heinrich, 2021). EfficientNet has emerged as a 
leading transfer learning backbone because its 
compound scaling method jointly balances 
network, depth, width, and resolution for improved 
accuracy per compute cost (Tan & Le, 2019). 
Empirical comparisons indicate that EfficientNet 
variants frequently achieve competitive accuracy 
while maintaining favorable compute efficiency 
relaive to contemporary architectures such as ViT 
and gMLP, supporting the selection of EfficientNet-
B0 for resource sensitive image classification tasks 
(Al-Rahhal et al., 2022). Also the base variant, 
EfficientNet-B0, has demonstrated high accuracy in 

animal image classification challenges (Reddy Aleti 
& Kurakula, 2024). 

Building on the Oxford-IIIT Pet Dataset, 
which includes twelve common cat breeds (Parkhi 
et al., 2012), this study develops and evaluates a 
web-based cat breed classifier using EfficientNet-
B0. We compare the performance of four 
optimizers, SGD, RMSprop, AdaGrad, and Adam by 
measuring accuracy, precision, recall, and F1-score. 
The trained model is intregated into a Flask web 
application with an SQLite backend and subjected 
to blackbox testing to verify functional reliability. 
By enabling rapid and accurate breed identification, 
our system aims to empower cat owners and 
enthusiasts to deliver breed appropriate care and to 
demonstrate the viability of lightwight, transfer 
learning based deployments in real world settings. 
 

RESEARCH METHODS 
 
This study outlines a systematic research 

workflow for developing a cat breed identification 
model using transfer learning on the EffcientNet 
architecture, with a comparative analysis of four 
optimizers. The process begins with problem 
identification and dataset collection, then 
progresses through  data preparation, model 
development, including dedicated optimizer 
experiments followed by performance evaluation. 
The optimal model is then deployed and subjected 
to system testing. Figure 1 illustrates the complete 
research workflow. 

 
Figure 1. Research Workflow 

 
Problem Identification 

Problem identification in this study 
involves analyzing the challenge of accurately 
detecting cat breeds using transfer learning on the 
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EfficientNet architecture. The goal is to implement 
and evaluate this approach within a web based 
system to streamline breed recognition for end 
users. 
 
Data Collection 

This study utilizes the Oxford-IIIT Pet 
Dataset (Parkhi et al., 2012) as its primary image 
source, owing to its extensive use in pet 
classification research and its balanced distribution 
across categories. From the full dataset of 37 animal 
classes, the twelve most common cat breeds were 
selected, yielding 2400 colour images (200 per 
breed). All images were downloaded in their 
original JPG format and subjected to an integrity 
check (file size and format verification) before 
being organized into directories by breed label. To 
confirm label accuracy, breed annotations were 
cross referenced with a reputable Kaggle mirror of 
the same dataset. 

 
Data Preparation 

Prior to training, the image corpus was 
prepared via a four stage preprocessing pipeline. A 
deliberate 80:10:10 split (training: validation:test) 
was employed to ensure that all twelve feline 
categories were adequately and evenly represented 
in each partition. Second, every image was resized 
to 224 x 224 pixels, ensuring uniform input 
dimensions for the EfficientNet-B0 architecture. 
Third, pixel intensities were normalized by 
rescaling values to the [0, 1] range, which promotes 
faster convergence and stable gradient updates. 

 
Figure 2. Dataset composition 

 
 Finally, on the fly data augmentation was 

applied during training to broaden sample 
variability and help prevent overfitting , 
transformations included random horizontal and 
vertical flips, rotations, zooms, crops, and shear. 
Such augmentation techniques are widely 
recommended to improve model robustness for 
image based tasks.  To demonstrate that the applied 
transformations maintain the semantic 

characteristics of the cat breeds and are relevant to 
the classification objective, a visual example of the 
augmentation pipeline is presented in Figure 3. 
These operations and their taxonomy are widely 
discussed in the literatur eon image augmentation 
(Xu et al., 2023; Yang et al., 2023). In particular, 
recent surveys emphasize that characteristic and 
the downstream classification objective, and that 
generative augmentation methods can be 
considered when simple transforms do not provide 
sufficient diversity (Teerath Kumar et al., 2024). 

 
Figure 3. Data Augmentation Visualization 

 
Model development 

Model development was carried out by fine 
tuning the EfficientNet-B0 convolutional neural 
network using a transfer learning approach, 
whereby pretrained ImageNet weights provide 
initial feature representations that are adapted to 
the cat breed classification task. The choice of 
EfficientNet-B0 is informed by comparative 
analyses of CNN families that emphasize the 
importance of balancing accuracy and 
computational efficiency for transfer learning tasks 
(Bhatt et al., 2021; Tan & Le, 2019). By reusing 
general purpose visual representation acquired 
from large scale sources, transfer learning reduces 
the number of epochs required for convergence and 
typically improves performance on limited target 
dataset (Gupta et al., 2022).  

For implementation, the pre trained 
EfficientNet-B0 backbone was intially frozen to 
utilize its feature extraction capabilities. As 
depicted in Figure 4, a custom classification head 
was then appended to the base model. This head 
consisted of a Global Average Pooling 2D layer, a 
Dropout layer (set to 0.5) for regularization, and a 
Dense layer with 12 output notes (corresponding to 
the target classes) using the softmax activation 
funciton. This configuration allowed the model to 
rapidly learn the classification task based on the 
high level features extracted by the frozen 
backbone. The overal structure is defined by the 
build_model function in the implementation. 
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Figure 4. Proposed EfficientNet-B0 Model 

Architecture 
 

Optimizer selection and configuration 
played a critical role in training dynamics. 
Empirical comparisons in computer vision context 
further demonstrate measureable performance 
differences among commonly used methods, 
motivating an experimental evaluation of candidate 
optimazers for this task (Bashetty et al., 2022; 
Hassan et al., 2023). Four gradient based 
optimizers, Stochastic Gradient Descent (SGD), 
AdaGrad, RMSProp, and Adam were therefore 
evaluated under consistent hyperparameter 
regimes to isolate their effects on learning 
dynamics and final accuracy.  

All models were trained for up to 100 
epochs using the categorical crossentropy loss 
function. To ensure robustness and prevent 
overfitting, the following practice measures were 
strictly applied. First, fixed random seeds used to 
promote full reproducibility. Model checkpointing 
applied to save the model weights that achieved the 
best validation loss throughout the training 
process, and Early Stopping to the validation loss 
with patience of 5 epochs. This mechanism 
automatically terminates training if no 
improvement in validation los sis observed for five 
consecutive epochs, and the best weights are 
restored. The relative performance of these 
optimizers, as measured by training and validation 
accuracy curves and time to convergence, will be 
illustrated alongside a comparison of other popular 
CNN transfer learning architectures. 

 
Figure 5. Comparison of CNN Transfer Learning 

Architectures 
 

Model Evaluation 
Model evaluation was performed using 

multiclass confusion matrix analysis to quantify the 
classifier’s ability to distinguish among the twelve 
cat breeds. The confusion matrix evaluates 
classifier performance by comparing predicted 
versus actual labels and organizing results into four 
outcome types, true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN), 
which serve as the basis for further metrics 
(Kulkarni et al., 2020). From these counts, four 
primary metrics were computed to assess overall 
and per-class performance. 

Overall accuracy is calculated as the rasio 
of correctly predicted examples to the total 
examples across all classes, formally given by 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 . 

However, accuracy is prone to misinterpretation 
when class are imbalanced, consequently, precision 
is provided as a complementary metric, defined as 
the ratio of true positive predictions to all positive 
predictions made by the model, 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , 

and is critical when false positives carry significant 
cost. Recall (sensitivity) quantifies the rasio of true 
positives to the total number of actual positive 
examples, reflecting the model’s capacity to capture 
real positive cases, 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , 

and is essential when a positive instance is missing, 
as it can be costly. Defined as the harmonic mean of 
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precision and recall, the F1-score furnishes a 
unified performance indikator that accounts for 
both error types. 

F1-score = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 . 

These metrics were generated for each breed and 
averaged (macro and weighted averages) to 
produce a comprehensive classification report. 
 The model evaluation stage will include a 
full classification report detailing precision, recall, 
and F1-score for each class. Additionally, the 
complete confusion matrix for the test set will also 
be visualized in this stage of research, to illustrate 
specific patterns of misclassification and guide 
future model refinements. 

 
Deployment 

Following model evaluation, the best 
performing EfficientNet-B0 classifier was exported 
as a serialized weight file and integrated into the 
application environment. The deployment stage 
involved loading the trained model into a 
lightweight interface pipeline, implemented via a 
Flask REST API, which accepts image inputs and 
returns breed predictions. To align with current 
MLOps guadiance, the model and its artifacts were 
loaded once at application startup, and lightweight 
practices for artifact/version management and 
runtime monitoring were adopted to minimise 
latency and increase operational reliability 
(Bayram & Ahmed, 2025; Mboweni, Masombuka, & 
Dongmo, 2022). This minimal deployment setup 
ensures rapid inference while maintaining 
compatibility with the upstream web interface. 
 
System Testing 

To assess real world performance beyond 
the held out test set, system testing was conducted 
using previously unseen images collected from end 
users and domain experts. These out of sample 
examples, separate from the training, validation, 
and test splits, were sent to the deployed API under 
controlled conditions for evaluation . Functional 
correctness, response time, and prediction 
accuracy on these real life data were measured to 
validate system robustness and generalizability. 

   
RESULTS AND DISCUSSION 

 
In this section, the training dynamics and 

validation behavior of EfficientNet-B0 models, fine-
tuned with four different optimizers, are presented 
and analyzed. First, the evolution of accuracy and 
loss over epochs is visualized to illustrate 

convergence characteristics. Next, a quantitative 
comparison of peak training and validation metrics 
is provided. Together, these results demonstrate 
how the choice of optimizer impacts both learning 
speed and the ultimate performance of the model.  

 
 
Training and Validation Performance 

The accuracy and loss curves for each 
optimizer are shown in Figure 4. These plots reveal 
that AdaGrad achieves the fastest initial rise in 
training accuracy but begins to plateau earlier. In 
contrast. In contrast, SGD converges more slowly 
but attains a higher peak validation accuracy before 
overfitting. RMSProp and Adam exhibit 
intermediate behaviors, with Adam stricking the 
best balance between convergence speed and 
stability. 

Figure 6. (a) Training Accuracy per Optimizer 

Figure 6. (b) Training Loss per Optimizer 
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Figure 6. (c) Validation Accuracy per Optimizer 

 
Figure 6. (d) Validation Loss per Optimize 

Immediately following these visualizations, a 
summary of peak performance per optimizer is 
provided in Table 1, recorded items comprise 
training/validation accuracies, their respective loss 
measures,, and the epoch index corresponding to 
early stopping activation. 

Table 1. Comparison of Training and Validation 

Performance by Optimizer 

Optimizer Best 
Train 
Acc 

Best 
Val 
Acc 

Train 
Loss 

Val 
Loss 

 
Epoch 
stop 

SGD 80% 88% 0.78 0.66 100 

AdaGrad 94% 91% 0.22 0.30 95 

RMSProp 91% 90% 0.30 0.34 100 

Adam 92% 89% 0.32 0.36 100 

 The results indicate that although AdaGrad 
reaches the highest training accuracy, its validation 
peak is closely matched by RMSProp and closely 
followed by Adam. SGD, while slower to converge, 

achieves a respectable validation accuracy but 
requires the full 100 epochs. 
 To quantitatively assess these models, a 
more granular analysis of their convergence 
patterns and generalization gaps is required: 

1. Stabilization trend and fluctuation, as 
visualized in figure 6 (d), all the three 
adaptive optimizers (AdaGrad, RMSProp, 
and Adam) demonstrate highly stable 
convergence. Their validation loss curves 
(orange, green, red) are smooth, with 
minimal inter epoch fluctuation, and 
stabilize relatively early in the training 
process. In contrast, SGD (blue line) 
converges significantly slower and 
stabilizes at much higher validation loss 
(0.66). 

2. Generalization  gap, the critical 
differentiator is the generalization gap, 
calculated from Table 1. RMSProp achieves 
the smallest gap at just 1% (91% - 90%), 
indicating superior generalization on the 
validation data. AdaGrad and Adam follow 
with a similar, larger gap of 3%. SGD’s 
negative gap confirms its tendency to 
underfit the data 

This analysis confirms that while Adam provides 
the stable convergence it is known for, the 
validation data reveals a highly competitive trade 
off. AdaGrad achieves the highest peak accuracy 
(91%), while RMSProp demonstrates the strongest 
generalization with 1% gap. Given these nuanced 
results on the validation set, a definitive conclusion 
on the best optimizer is premature. The final, most 
reliable measure of performance will be 
determined by evaluating these models on the held 
out test set, which is presented in the following 
section. 
 
Test Set Evaluation 

Generalization capability was assessed 
with the held out test set, macro avaraged metrics 
(accuracy, precision, recall, F1-score) were 
computed for each optimizer, and confusion matrix 
for the leading model was produced to visualise 
misclassification trends. The results, summarised in 
Figure 5, reveal nuanced trade offs among the four 
optimizers algorithms when applied to 
EfficientNet-B0. 
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Figure 5. (a) SGD Classification Report on Test Set 

Figure 5. (b) AdaGrad Classification Report on Test 
Set 

Figure 5. (c) RMSProp Classification Report on 
Test Set 

 

Figure 5. (d) Adam Classification Report on Test 
Set 

 Adam achieves the highest overall 
accuracy (88%), with uniformly strong precision 
and recall across breeds. AdaGrad and RMSProp 
achieve comparable accuracy, yet Adam holds a 
small lead in overall accuracy and attains the best 
F1 measure, which implies a more balanced 
decrease in both false positive and false negative 
errors. 

 
Figure 6. Confusion Matrix for Adam Optimizer on 

Test Set 

 Figure 6 illustrates the confusion matrix 
for the Adam based model. Most breeds such as 
Bombay and Sphynx exhibit near perfect true 
positive rates. At the same time, occasional 
misclassifications occur between visually similar 
categories (e.g., Birman vs. Ragdoll vs. Siamise, 
Russian Blue vs. other blue-toned coats). Adam’s 
adaptive moment estimation stabilises gradient 
updates throughtout training, yielding robust per-
class performance and minimising misclassification 
clusters. 
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These findings suggest that Adam’s 
combination of momentum and adaptive learning 
rates confers superior stability during fine-tuning, 
enabling EfficientNet-B0 to generalise effectively 
on multiclass image data. For practical deployment, 
the Adam tuned model offers the best trade off 
between high accuracy and consistent performance 
across all twelve cat breeds. 

 
System Testing 

The final evaluation stage assesses the 
deployed EfficientNet-B0 model in a production like 
environment. After export and integration into a 
Flask based REST API, two key aspects were tested, 
functional correctness via black-box testing and 
real world accuracy using external images provided 
by cat owners and experts. Additionally, core user 
interfaces (homepage and history page) are shown 
to demonstrate how predictions and results are 
presented. 

Functional verification was performed 
through black-box testing, where each feature, 
including uploading image, interface, 
authentication, history retrival, and deletion was 
exercised without inspecting the internal code. 
Table 2 summarises the test cases and their pass or 
fail outcomes. 

Table 2. Black-Box Testing Result 

Test Case Input Expected 
Output 

Actual 
Result 

Account 
Registration 

Valid 
username, 

email, 
password 

Redirect 
to sign-in 

Pass 

User login Valid 
credentials 

Access 
homepage 

Pass 

Image 
upload 

JPEG/PNG 
< 5MB 

Preview + 
“Detect 
active” 

Pass 

Breed 
detection 

Uploaded 
cat image 

Prediction 
+ 

confidence 

Pass 

View 
history 

- Table of 
past 

detection 

Pass 

Delete 
record 

History ID Record 
removed 

Pass 

Oversize 
upload 

>5MB 
image 

Validation 
error 

Pass 

Logout - Redirect 
to sign-in 

Pass 

 
To contextualize how users interact with 

the application, Figure 7 and 8 presents the 

homepage, where images are uploaded and 
predictions are displayed, and the history page, 
which organises past results by user id and 
timestamp. 

 

Figure 7. User Interface Homepage 

 

Figure 8. User Interface History Page 

Finally, the model’s real world accuracy 
was measured on ten external images of purebred 
cats not included in the original dataset. Table 3 
reports the true breed, predicted breed, and 
correctness for each sample. The system correctly 
identified eight out of ten images (80%), confirming 
that the EfficientNet-B0 + Adam configuration 
generalizes well to new, real life inputs. 

Table 3. Real-World Accuracy on External Images 

Images True 
Breed 

Correct 
(Y/N) 

 

 

Bengal 

 

Y 
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Ragdoll 

 

N 

 

 

British 
Shorthair 

 

N 

 

 

Maine 
Coon 

 

Y 

 

 

Siamise 

 

Y 

 

 

British 
Shorthair 

 

Y 

 

 

Persian 

 

Y 

 

 

Russian 
Blue 

 

Y 

 

 

British 
Shorthair 

 

Y 

 

 

Ragdoll 

 

Y 

The results indicate that the deployed 
model achieved both functional requirements but 
also maintains high classification accuracy in real-
world scenarios, validating its practical 
applicability. 
 

CONCLUSIONS AND SUGGESTIONS 
 
Conclusion 

This study developed and evaluated a 
transfer learning approach for cat breed 
identification using EfficientNet-B0 and a 
comparative examination of four optimizers. 
Results show that the choice of optimizer materially 
influenced training dynamics and generalization. 
AdaGrad achieved the highest training accuracy but 
exhibited earlier plateauing and signs of overfitting. 
At the same time, Adam provided the best balance 
of convergence, stability, and test set performance, 
achieving 88% accuracy on the held out set. 
Confusion matrix analysis highlighted strong 
recognition for breeds such as Bombay and Sphynx 
and recurring confusion among visually similar 
categories. End to end verification demonstrated 
that the model can be integrated into a lightweight 
Flask service with reliable functionality. A small 
real world trial (10 external images) produced 80% 
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correct identifications, supporting the system’s 
practical applicability for in distribution images. 

 
Suggestion 

For future work and practical deployment, 
it is recommended to enlarge and diversify the 
evaluation corpus to better capture real world 
variablitiy (lighting, pose, background, and mixed 
breeds) and to investigate more substantial 
augmentation or generative data augmentation 
methods to reduce class confussion. Additionally, 
broader comparison accross backbones (larger 
EfficientNet variants, lightweight CNNs or 
transformer hybrids) and more systematic 
hyperparameter/optimizer searches (including 
recent optimizers and regularization strategies) 
could clarify trade offs between accuracy, latency 
and model size. Operationally, adopting basic 
MLOps practices such as single time model loading, 
model versioning, monitoring, and automated 
testing and conducting user studies with cat owners 
or veterinarians would further validate the utility 
and guide improvements for real world adoption. 
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