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Abstract

Cats are widely kept as companion animals and exhibit substantial breed level variation in appearance and
behavior that influences their care. This study develops a lightweight, image based classifier for identifying
twelve common cat breeds using transfer learning on the EfficientNet-BO backbone. Experiments
contrasted four optimization algorithms (SGD, AdaGrad, RMSProp, and Adam) to identify the training
strategy that balances convergence speed and generalization. Model effectiveness was measured with
confusion matrix analysis and common classification indicators (accuracy, precision, recall, and F1-score).
The best performing setup, EfficientNet-BO fine tuned with the Adam optimizer attained 92% training
accuracy, 89% validation accuracy, and 88% on the held out test partition. Subsequently, we integrated the
trained model into a Flask web application, backed by an SQLite database, and conducted black-box testing
to assess its functional reliability. All system functions met specifications and runtime predictions
corresponded closely to ground truth labels. This platform provides a rapid and accurate tool for cat owners
and enthusiasts to identify breeds in real-world scenarios, highlighting the usefulness of transfer learning
in a streamlined web based implementation.

Keywords: Cat breed classification; EfficientNet-B0; transfer learning; Flask web applicaton

Abstrak

Kucing banyak dipelihara sebagai hewan pendamping dan menunjukkan variasi antar ras yang signifikan
dalam penampilan serta perilaku yang memengaruhi kebutuhan perawatannya. Penelitian ini
mengembangkan sebuah klasifikator citra ringan untuk mengidentifikasi dua belas ras kucing umum dengan
memanfaatkan pendekatan transfer learning pada backbone EfficientNet-B0. Eksperiment membandingkan
empat algoritma optimisasi (SGD, AdaGrad, RMSProp, dan Adam) untuk menentukan strategi pelatihan yang
menyeimbangkan kecepatan konvergensi dan kemampuan generalisasi. Kinerja model diukur menggunakan
anlisis confusion matrix dan metrik klasifikasi standar (akurasi, presisi, recall, dan F1-score). Konfigurasi
terbaik, yakni EfficientNet-B0 yang di fine tuned dengan optimizer Adam, mencapai akurasi pelatihan 92 %,
akurasi validasi 89%, dan akurasi 88% pada partisi uji terpisah. Model yang terlatih diekspor dan
diintegrasikan ke dalam aplikasi web sederhana berbasis Flask dengan penyimpanan SQLite, kemudian diuji
menggunakan skema blackbox untuk menilai keandalan fungsional. Seluruh fungsi inti memenuhi spesifikasi
dan prediksi runtime menunjukkan kesesuaian yang tinggi dengan label sebenarnya. Sistem ini menawarkan
alat cepat dan praktis bagi pemilik serta penggemar kucing untuk mengidentifikasi ras di lingkungan nyata,
sekaligus menyoroti manfaat transfer learning pada implementasi web yang ringkas.

Kata kunci: Klasifikasi ras kucing; EfficientNet-BO0; transfer learning; aplikasi web Flask

INTRODUCTION requirements, and the intense emotional bonds

they form with their owners. As domestic cats

Cats rank among the world’s most beloved = encompass a variety of breeds, each characterized

companion animals, including in Indonesia, where = by distinct coat patterns, body shapes, and

47% of survey respondents reported keeping cats  behavioral traits, accurate breed identification
as pets (Rakuten Insight, 2021). This popularity = poses a challenge for many pet owners.

stems from cats’ adaptability to diverse living Several studies have underscored the

environments, their relatively low maintenance  importance of breed-specific knowledge for health
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and welfare. For instance, (Salonen, et al., 2019)
reported that Persian and Maine Coon cats exhibit
elevated risk factors for polycystic kidney disease,
whereas (Vapalahti et al, 2016) demonstrated
significant behavioral differences, such as
aggression levels and activity patterns across
breeds. Inaccurate breed recognition may therefore
lead to suboptimal nutritional planning and delayed
detection of hereditary conditions. Leading pet food
manufacturers, such as Royal Canin, have
responded by formulating breed-tailored diets,
further emphasizing the practical necessity of
precise breed determination (Royal Canin, 2024).
However, current manual identification, relying on
visual inspection by pet owners or non specialist
veterinarian sis inherently subjective, time
consuming, and prone to error. To overcome these
limitations and ensure the accuracy demanded by
breed specific care, a more robust and objective
approach is imperative.

To address this need for accurate, efficient,
and objective identification, automated image
based classification systems have gained traction,
leveraging advances in Artificial Intelligence (AI)
have enabled automated image classification
pipelines based on convolutional architectures to
deliver makedly improve results on a broad
spectrum of computer vision problems, from
medical diagnosis (e.g., detection of diabetic eye
disease; (Albelaihi & Ibrahim, 2024) to animal
breed recognition for robust object recognition.
Surveys of the field highlight a wide range of CNN
families (e.g., VGG, ResNet, Inception, MobileNet,
EfficientNet) and summarize common challenges,
such as data scarcity, class imbalance, and
overfitting, as well as their remedies, including
transfer learning and data augmentation (Alzubaidi
et al, 2021; Zhao et al,, 2024). Transfer learning
allows CNN models pretrained on large datasets to
be adapted to smaller, domain specific image
collections, improving accuracy while lowering
computational demans (Janiesch, Zschech, &
Heinrich, 2021). EfficientNet has emerged as a
leading transfer learning backbone because its
compound scaling method jointly balances
network, depth, width, and resolution for improved
accuracy per compute cost (Tan & Le, 2019).
Empirical comparisons indicate that EfficientNet
variants frequently achieve competitive accuracy
while maintaining favorable compute efficiency
relaive to contemporary architectures such as ViT
and gMLP, supporting the selection of EfficientNet-
BO for resource sensitive image classification tasks
(Al-Rahhal et al., 2022). Also the base variant,
EfficientNet-B0, has demonstrated high accuracy in
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animal image classification challenges (Reddy Aleti
& Kurakula, 2024).

Building on the Oxford-IIIT Pet Dataset,
which includes twelve common cat breeds (Parkhi
et al., 2012), this study develops and evaluates a
web-based cat breed classifier using EfficientNet-
B0. We compare the performance of four
optimizers, SGD, RMSprop, AdaGrad, and Adam by
measuring accuracy, precision, recall, and F1-score.
The trained model is intregated into a Flask web
application with an SQLite backend and subjected
to blackbox testing to verify functional reliability.
By enabling rapid and accurate breed identification,
our system aims to empower cat owners and
enthusiasts to deliver breed appropriate care and to
demonstrate the viability of lightwight, transfer
learning based deployments in real world settings.

RESEARCH METHODS

This study outlines a systematic research
workflow for developing a cat breed identification
model using transfer learning on the EffcientNet
architecture, with a comparative analysis of four
optimizers. The process begins with problem

identification and dataset collection, then
progresses through data preparation, model
development, including dedicated optimizer

experiments followed by performance evaluation.
The optimal model is then deployed and subjected
to system testing. Figure 1 illustrates the complete
research workflow.

Problem
Identification

I

Data Collection

I

Data Preparation

I

Model Development

I

Model Evaluation

|

Deployment

!

System Testing

Figure 1. Research Workflow

Problem Identification

Problem identification in this study
involves analyzing the challenge of accurately
detecting cat breeds using transfer learning on the
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EfficientNet architecture. The goal is to implement
and evaluate this approach within a web based
system to streamline breed recognition for end
users.

Data Collection

This study utilizes the Oxford-IIIT Pet
Dataset (Parkhi et al,, 2012) as its primary image
source, owing to its extensive use in pet
classification research and its balanced distribution
across categories. From the full dataset of 37 animal
classes, the twelve most common cat breeds were
selected, yielding 2400 colour images (200 per
breed). All images were downloaded in their
original JPG format and subjected to an integrity
check (file size and format verification) before
being organized into directories by breed label. To
confirm label accuracy, breed annotations were
cross referenced with a reputable Kaggle mirror of
the same dataset.

Data Preparation

Prior to training, the image corpus was
prepared via a four stage preprocessing pipeline. A
deliberate 80:10:10 split (training: validation:test)
was employed to ensure that all twelve feline
categories were adequately and evenly represented
in each partition. Second, every image was resized
to 224 x 224 pixels, ensuring uniform input
dimensions for the EfficientNet-BO architecture.
Third, pixel intensities were normalized by
rescaling values to the [0, 1] range, which promotes
faster convergence and stable gradient updates.

=
o
4

(b1}

class train val

Abyssinian 120 40

Bengal 120 40
Biman 120 40
Bombay 120 40 40
BritishShorthair 120 40 40
120 40
MaineCoon 120 40
Persian 120 40

120 40

0

1

2

3

4

5  EgyptianMau
6

7

8 Ragdoll
9

RussianBlue 120 40

10 Siamese 120 40 40

" Sphynx 120 40

Figure 2. Dataset composition

Finally, on the fly data augmentation was
applied during training to broaden sample
variability and help prevent overfitting |,
transformations included random horizontal and
vertical flips, rotations, zooms, crops, and shear.
Such augmentation techniques are widely
recommended to improve model robustness for
image based tasks. To demonstrate that the applied
transformations maintain the semantic

13

characteristics of the cat breeds and are relevant to
the classification objective, a visual example of the
augmentation pipeline is presented in Figure 3.
These operations and their taxonomy are widely
discussed in the literatur eon image augmentation
(Xu et al., 2023; Yang et al.,, 2023). In particular,
recent surveys emphasize that characteristic and
the downstream classification objective, and that
generative augmentation methods can be
considered when simple transforms do not provide
sufficient diversity (Teerath Kumar et al., 2024).

Figure 3. Data Augmentation Visualization

Model development

Model development was carried out by fine
tuning the EfficientNet-BO convolutional neural
network using a transfer learning approach,
whereby pretrained ImageNet weights provide
initial feature representations that are adapted to
the cat breed classification task. The choice of
EfficientNet-BO is informed by comparative
analyses of CNN families that emphasize the
importance  of balancing accuracy and
computational efficiency for transfer learning tasks
(Bhatt et al, 2021; Tan & Le, 2019). By reusing
general purpose visual representation acquired
from large scale sources, transfer learning reduces
the number of epochs required for convergence and
typically improves performance on limited target
dataset (Gupta et al., 2022).

For implementation, the pre trained
EfficientNet-BO backbone was intially frozen to
utilize its feature extraction capabilities. As
depicted in Figure 4, a custom classification head
was then appended to the base model. This head
consisted of a Global Average Pooling 2D layer, a
Dropout layer (set to 0.5) for regularization, and a
Dense layer with 12 output notes (corresponding to
the target classes) using the softmax activation
funciton. This configuration allowed the model to
rapidly learn the classification task based on the
high level features extracted by the frozen
backbone. The overal structure is defined by the
build_model function in the implementation.
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Input Layer W
Input: 224 x 224 x 3 (RGB Image) [
— —_—

3

EfficientNet-BO
Base Model

Pre-trained on ImageNet

Frozen Layers
(Trainable: False)

4

Global Avarage Pooling 2D
Output: 1280 channels

Dense Layer (Output Head)
Units: 12 (Classes)
Activation: Softmax

Output
12 x 1 Vector (Class Probisbiities)
Cat Breed Classification

Figure 4. Proposed EfficientNet-B0O Model
Architecture

Optimizer selection and configuration
played a critical role in training dynamics.
Empirical comparisons in computer vision context
further demonstrate measureable performance
differences among commonly used methods,
motivating an experimental evaluation of candidate
optimazers for this task (Bashetty et al, 2022;
Hassan et al, 2023). Four gradient based
optimizers, Stochastic Gradient Descent (SGD),
AdaGrad, RMSProp, and Adam were therefore
evaluated under consistent hyperparameter
regimes to isolate their effects on learning
dynamics and final accuracy.

All models were trained for up to 100
epochs using the categorical crossentropy loss
function. To ensure robustness and prevent
overfitting, the following practice measures were
strictly applied. First, fixed random seeds used to
promote full reproducibility. Model checkpointing
applied to save the model weights that achieved the
best validation loss throughout the training
process, and Early Stopping to the validation loss
with patience of 5 epochs. This mechanism
automatically  terminates  training if no
improvement in validation los sis observed for five
consecutive epochs, and the best weights are
restored. The relative performance of these
optimizers, as measured by training and validation
accuracy curves and time to convergence, will be
illustrated alongside a comparison of other popular
CNN transfer learning architectures.
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Model Evaluation

Model evaluation was performed using
multiclass confusion matrix analysis to quantify the
classifier’s ability to distinguish among the twelve
cat breeds. The confusion matrix evaluates
classifier performance by comparing predicted
versus actual labels and organizing results into four
outcome types, true positive (TP), true negative
(TN), false positive (FP), and false negative (FN),
which serve as the basis for further metrics
(Kulkarni et al., 2020). From these counts, four
primary metrics were computed to assess overall
and per-class performance.

Overall accuracy is calculated as the rasio
of correctly predicted examples to the total
examples across all classes, formally given by

TP+TN

Accuracy = ——.
y TP+TN+FP+FN

However, accuracy is prone to misinterpretation
when class are imbalanced, consequently, precision
is provided as a complementary metric, defined as
the ratio of true positive predictions to all positive
predictions made by the model,

TP
TP+FP’

Precision =

and is critical when false positives carry significant
cost. Recall (sensitivity) quantifies the rasio of true
positives to the total number of actual positive
examples, reflecting the model’s capacity to capture
real positive cases,

TP

Recall = m )

and is essential when a positive instance is missing,
as it can be costly. Defined as the harmonic mean of
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precision and recall, the F1-score furnishes a
unified performance indikator that accounts for
both error types.

Precision x Recall
Fl-score=2 X ——.
Precision + Recall

These metrics were generated for each breed and
averaged (macro and weighted averages) to
produce a comprehensive classification report.

The model evaluation stage will include a
full classification report detailing precision, recall,
and Fl-score for each class. Additionally, the
complete confusion matrix for the test set will also
be visualized in this stage of research, to illustrate
specific patterns of misclassification and guide
future model refinements.

Deployment

Following model evaluation, the best
performing EfficientNet-BO classifier was exported
as a serialized weight file and integrated into the
application environment. The deployment stage
involved loading the trained model into a
lightweight interface pipeline, implemented via a
Flask REST API, which accepts image inputs and
returns breed predictions. To align with current
MLOps guadiance, the model and its artifacts were
loaded once at application startup, and lightweight
practices for artifact/version management and
runtime monitoring were adopted to minimise
latency and increase operational reliability
(Bayram & Ahmed, 2025; Mboweni, Masombuka, &
Dongmo, 2022). This minimal deployment setup
ensures rapid inference while maintaining
compatibility with the upstream web interface.

System Testing

To assess real world performance beyond
the held out test set, system testing was conducted
using previously unseen images collected from end
users and domain experts. These out of sample
examples, separate from the training, validation,
and test splits, were sent to the deployed API under
controlled conditions for evaluation . Functional
correctness, response time, and prediction
accuracy on these real life data were measured to
validate system robustness and generalizability.

RESULTS AND DISCUSSION

In this section, the training dynamics and
validation behavior of EfficientNet-B0 models, fine-
tuned with four different optimizers, are presented
and analyzed. First, the evolution of accuracy and
loss over epochs is visualized to illustrate

convergence characteristics. Next, a quantitative
comparison of peak training and validation metrics
is provided. Together, these results demonstrate
how the choice of optimizer impacts both learning
speed and the ultimate performance of the model.

Training and Validation Performance

The accuracy and loss curves for each
optimizer are shown in Figure 4. These plots reveal
that AdaGrad achieves the fastest initial rise in
training accuracy but begins to plateau earlier. In
contrast. In contrast, SGD converges more slowly
but attains a higher peak validation accuracy before
overfitting. RMSProp and Adam exhibit
intermediate behaviors, with Adam stricking the
best balance between convergence speed and
stability.

Training Accuracy per Optimizer

044

—— SGO train_acc
AdaGrad train_acc

—— AMSProp train_acc

—— adam train_acc

[ 20 0 60 80 100
Epoch

Figure 6. (a) Training Accuracy per Optimizer

Training Loss per Optimizer

051

Epoch

Figure 6. (b) Training Loss per Optimizer
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Validation Accuracy per Optimizer

Enoch

Figure 6. (c) Validation Accuracy per Optimizer

Validation Loss per Optimizer

Epoch

Figure 6. (d) Validation Loss per Optimize

Immediately following these visualizations, a
summary of peak performance per optimizer is
provided in Table 1, recorded items comprise
training/validation accuracies, their respective loss
measures,, and the epoch index corresponding to
early stopping activation.

Table 1. Comparison of Training and Validation
Performance by Optimizer

Optimizer Best Best Train Val Epoch
Train Val Loss Loss stop
Acc Acc

SGD 80% 88% 0.78 0.66 100

AdaGrad 94% 91% 0.22 030 95

RMSProp 91% 90% 0.30 0.34 100

Adam 92% 89% 032 036 100

The results indicate that although AdaGrad
reaches the highest training accuracy, its validation
peak is closely matched by RMSProp and closely
followed by Adam. SGD, while slower to converge,

achieves a respectable validation accuracy but
requires the full 100 epochs.

To quantitatively assess these models, a
more granular analysis of their convergence
patterns and generalization gaps is required:

1. Stabilization trend and fluctuation, as
visualized in figure 6 (d), all the three
adaptive optimizers (AdaGrad, RMSProp,
and Adam) demonstrate highly stable
convergence. Their validation loss curves
(orange, green, red) are smooth, with
minimal inter epoch fluctuation, and
stabilize relatively early in the training
process. In contrast, SGD (blue line)
converges significantly slower and
stabilizes at much higher validation loss
(0.66).

2. Generalization gap, the critical
differentiator is the generalization gap,
calculated from Table 1. RMSProp achieves
the smallest gap at just 1% (91% - 90%),
indicating superior generalization on the
validation data. AdaGrad and Adam follow
with a similar, larger gap of 3%. SGD’s
negative gap confirms its tendency to
underfit the data

This analysis confirms that while Adam provides
the stable convergence it is known for, the
validation data reveals a highly competitive trade
off. AdaGrad achieves the highest peak accuracy
(91%), while RMSProp demonstrates the strongest
generalization with 1% gap. Given these nuanced
results on the validation set, a definitive conclusion
on the best optimizer is premature. The final, most
reliable measure of performance will be
determined by evaluating these models on the held
out test set, which is presented in the following
section.

Test Set Evaluation

Generalization capability was assessed
with the held out test set, macro avaraged metrics
(accuracy, precision, recall, F1l-score) were
computed for each optimizer, and confusion matrix
for the leading model was produced to visualise
misclassification trends. The results, summarised in
Figure 5, reveal nuanced trade offs among the four
optimizers  algorithms when applied to
EfficientNet-BO.

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License



JURNAL RISET INFORMATIKA
Vol. 8, No. 1. December 2025

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v8i1.417

Accredited rank 4 (SINTA 4), excerpts from the decision of the DITJEN DIKTIRISTEK No. 230/E/KPT /2023

===== SGD — Classification Report =====

precision recall fl-score  support

Abyssinian 0.86 8.93 8.89 40
Bengal 0.88 .75 0.81 40
Birman 0.69 0.82 08.75 40
Bombay @.97 0.97 0.97 40
BritishShorthair 0.64 8.85 8.73 40
EgyptianMau 0.86 0.90 0.88 40
MaineCoon 0.95 @.93 8.94 40
Persian 0.92 0.90 0.91 40
Ragdoll 8.73 0.75 0.74 40
RussianBlue 0.81 0.53 0.64 40
Siamese 0.97 0.88 09.92 40
Sphynx 1.80 0.97 9.99 49
accuracy 0.85 480
macro avg 0.86 0.85 0.85 480
weighted avg 9.86 .85 .85 480

Figure 5. (a) SGD Classification Report on Test Set

== AdaGrad — Classification Report =====

precision recall fl-score  support
Abyssinian 8.90 9.93 9.91 40
Bengal 0.89 Q.78 9.83 48
Birman 0.74 0.85 9.79 40
Bombay 0.97 @.97 0.97 48
BritishShorthair 8.72 9.85 0.78 40
EgyptianMau .86 9.93 0.89 40
MaineCoon @.95 9.93 0.94 40
Persian 8.95 9.90 0.92 40
Ragdoll 0.79 9.82 0.80 40
RussianBlue 6.82 0.68 0.74 40
Siamese 8.95 9.88 9.91 40
Sphynx 1.00 0.97 0.99 40
accuracy 0.87 480
macro avg 0.88 0.87 0.87 480
weighted avg 6.88 0.87 0.87 480
Figure 5. (b) AdaGrad Classification Report on Test
Set

===== RMSProp — Classification Report =====
precision recall fl1-score support
Abyssinian 8.93 8.93 0.93 40
Bengal 0.88 0.75 9.81 40
Birman e.77 9.82 0.80 48
Bombay 0.97 0.97 9.97 40
BritishShorthair 0.69 0.88 0.77 40
EgyptianMau 0.84 9.93 0.88 48
MaineCoon e.97 @.93 9.95 40
Persian 0.92 .90 0.91 40
Ragdoll 0.76 0.88 0.81 40
RussianBlue 0.86 0.60 0.71 40
Siamese 0.95 0.88 0.91 40
Sphynx 1.00 1.00 1.00 40
accuracy 0.87 480
macro avg ©.88 0.87 0.87 480
weighted avg .88 @.87 9.87 180

Figure 5. (c) RMSProp Classification Report on
Test Set

===== Adam — Classification Report =====

precision recall f1-score support

Abyssinian 8.93 9.95 9.94 190
Bengal 0.91 0.80 0.85 40
Birman 0.77 9.85 0.81 40
Bombay 0.97 9.97 0.97 40
BritishShorthair 8.72 9.85 9.78 40
EgyptianMau 0.86 9.95 0.90 40
MaineCoon @.92 0.9@ 2.91 40
Persian .90 0.90 .90 40
Ragdoll 0.80 0.88 0.83 40
RussianBlue 0.83 9.62 8.71 40
Siamese .97 0.88 0.92 40
Sphynx 1.00 1.00 1.00 40
accuracy 0.88 480
macro avg 0.88 0.88 0.88 480
weighted avg 8.88 0.88 9.88 480

Figure 5. (d) Adam Classification Report on Test
Set

Adam achieves the highest overall
accuracy (88%), with uniformly strong precision
and recall across breeds. AdaGrad and RMSProp
achieve comparable accuracy, yet Adam holds a
small lead in overall accuracy and attains the best
F1 measure, which implies a more balanced
decrease in both false positive and false negative
errors.

Adam — Confusion Matrix
40
Abyssinian 1 0 0 0 [ [ 0 1 0 [ [

Bengal -

Birman -
Bombay -
Britishshorthair -

EgyptianMau -
- 20

True Label

MaineCoon -
Persian -
Ragdoll -

RussianBlue -
Siamese -

sphynx -

Predicted Label

Figure 6. Confusion Matrix for Adam Optimizer on
Test Set

Figure 6 illustrates the confusion matrix
for the Adam based model. Most breeds such as
Bombay and Sphynx exhibit near perfect true
positive rates. At the same time, occasional
misclassifications occur between visually similar
categories (e.g., Birman vs. Ragdoll vs. Siamise,
Russian Blue vs. other blue-toned coats). Adam’s
adaptive moment estimation stabilises gradient
updates throughtout training, yielding robust per-
class performance and minimising misclassification
clusters.
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These findings suggest that Adam’s
combination of momentum and adaptive learning
rates confers superior stability during fine-tuning,
enabling EfficientNet-BO to generalise effectively
on multiclass image data. For practical deployment,
the Adam tuned model offers the best trade off
between high accuracy and consistent performance
across all twelve cat breeds.

System Testing

The final evaluation stage assesses the
deployed EfficientNet-BO model in a production like
environment. After export and integration into a
Flask based REST API, two key aspects were tested,
functional correctness via black-box testing and
real world accuracy using external images provided
by cat owners and experts. Additionally, core user
interfaces (homepage and history page) are shown
to demonstrate how predictions and results are
presented.

Functional verification was performed
through black-box testing, where each feature,
including uploading image, interface,
authentication, history retrival, and deletion was
exercised without inspecting the internal code.
Table 2 summarises the test cases and their pass or
fail outcomes.

Table 2. Black-Box Testing Result

Test Case Input Expected Actual
Output Result
Account Valid Redirect Pass
Registration username, tosign-in
email,
password
User login Valid Access Pass
credentials homepage
Image JPEG/PNG  Preview + Pass
upload <5MB “Detect
active”
Breed Uploaded Prediction  Pass
detection catimage +
confidence
View - Table of Pass
history past
detection
Delete History ID Record Pass
record removed
Oversize >5MB Validation  Pass
upload image error
Logout - Redirect Pass
to sign-in

homepage, where images are uploaded and
predictions are displayed, and the history page,
which organises past results by user id and
timestamp.

Deteksi Ras Kucing

Figure 7. User Interface Homepage

History Deteksi Ras Kucing

Gambar

Figure 8. User Interface History Page

Finally, the model’s real world accuracy
was measured on ten external images of purebred
cats not included in the original dataset. Table 3
reports the true breed, predicted breed, and
correctness for each sample. The system correctly
identified eight out of ten images (80%), confirming
that the EfficientNet-BO + Adam configuration
generalizes well to new, real life inputs.

Table 3. Real-World Accuracy on External Images

Images True Correct
Breed (Y/N)
— v Bengal Y

W

To contextualize how users interact with
the application, Figure 7 and 8 presents the

18
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The results indicate that the deployed
model achieved both functional requirements but
also maintains high classification accuracy in real-
world  scenarios, validating its practical
applicability.

CONCLUSIONS AND SUGGESTIONS

Conclusion

This study developed and evaluated a
transfer learning approach for cat breed
identification using EfficientNet-BO and a
comparative examination of four optimizers.
Results show that the choice of optimizer materially
influenced training dynamics and generalization.
AdaGrad achieved the highest training accuracy but
exhibited earlier plateauing and signs of overfitting.
At the same time, Adam provided the best balance
of convergence, stability, and test set performance,
achieving 88% accuracy on the held out set.
Confusion matrix analysis highlighted strong
recognition for breeds such as Bombay and Sphynx
and recurring confusion among visually similar
categories. End to end verification demonstrated
that the model can be integrated into a lightweight
Flask service with reliable functionality. A small
real world trial (10 external images) produced 80%
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correct identifications, supporting the system’s
practical applicability for in distribution images.

Suggestion

For future work and practical deployment,
it is recommended to enlarge and diversify the
evaluation corpus to better capture real world
variablitiy (lighting, pose, background, and mixed
breeds) and to investigate more substantial
augmentation or generative data augmentation
methods to reduce class confussion. Additionally,
broader comparison accross backbones (larger

EfficientNet variants, lightweight CNNs or
transformer hybrids) and more systematic
hyperparameter/optimizer searches (including

recent optimizers and regularization strategies)
could clarify trade offs between accuracy, latency
and model size. Operationally, adopting basic
MLOps practices such as single time model loading,
model versioning, monitoring, and automated
testing and conducting user studies with cat owners
or veterinarians would further validate the utility
and guide improvements for real world adoption.
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