SMART SYSTEM FOR AUTOMATIC CROP AND RECOGNITION PLAT NUMBER

Desti Fitriati¹, Nira Ravika Pasha², Bambang Hariyanto³, Amir Murtako⁴, Sri Rezeki Candra Nursari⁵

Informatics Engineering, Faculty of Engineering¹,²,³,⁴,⁵
Universitas Pancasila¹,²,³,⁴,⁵
desti.fitriati@univpancasila.ac.id¹, niraravika96@gmail.com², bbghariyanto@yahoo.com³, amir.murtako@univpancasila.ac.id⁴, sri.rezeki.candra.n@univpancasila.ac.id⁵

ABSTRACT

Based on data from the Central Statistics Agency in 2018, it was written that the number of motorbikes for the Indonesian region was 120.10 million or 82% and for cars 26.75 million or around 18% of the total population. With the increasing population of motorized vehicle users, it will result in an increase in problems that occur in traffic violations and also the technology security system in the parking system. Most of the existing parking systems still require parking attendants. In addition, the existing system only discusses the opening and closing of bars and providing information on parking lots. Although the existing system already uses artificial intelligence to read plate numbers, the officers are still matching it. Of course this is not effective and efficient because the use of artificial intelligence is not purely done by the system. To overcome this, the solution given in this study is to create a parking system that can read plate numbers automatically and store vehicle entry data directly into the database. The system created can also open and close the door latch automatically. The template matching image processing technique was chosen to solve this problem. Based on the experimental results, the system can recognize plate numbers with an accuracy of 83%. For further research, it is necessary to introduce vehicle ownership and provide parking information so that the parking system becomes more perfect.

INTRODUCTION

Currently, the means of transportation that have a very big role for human needs are vehicles, both motorbikes and cars. This has led to increased use of vehicles. Data from the Central Bureau of Statistics in 2018 (BPS Indonesia, 2018) which came from the Indonesian Police Office stated that the number of motorbikes for the Indonesian territory was 120.10 million or 82% of the total number of vehicles in Indonesia. As for cars 26.75 million or approximately 18% of the total.
increasing population of motorized vehicle users will result in an increase in problems that occur in traffic violations and also the technology security system in the parking system (Putra & Santosa, 2017).

The parking system that is widely researched and developed is the parking information system. However, research and development on automation processes that ensure the safety of parking lots is still rare. The current parking system for security purposes still requires officers. Officers in parking lots have a duty to compare the license plate number on the vehicle with the license plate number on the ticket and the time of entry (Sarief, Biu, & Chandra, 2019)

Vehicle number plates are unique and are only owned by one vehicle per vehicle plate series because the number plate system in Indonesia is a legacy from the Dutch East Indies colonial division based on residency areas (Budianto, Adjji, & Hartanto, 2015). After running for a long time, the reference is still used until now which consists of two lines, namely the first line consisting of the residency area code followed by the police number of the type of motorized vehicle and the last is the area code of the residency, the second line is the validity period of the number plate which consists of month and year (Saputra, Winardi, Mudjanarko, & Inayati, 2017). The designation varies according to the basic color of the number plates, the colors on the number plates are black, red, yellow, and white. As well as the police logo as copyright and number plate brand holders in Indonesia (Maidiyasa, Bhirawa, & Winardi, 2019). This makes it easier for parking attendants to recognize and secure the vehicle.

Currently, the detection of vehicle plates in the Pancasila University campus parking lot can be done manually by parking officers by matching existing vehicle plates with conventional data stored in records. However, conventional methods are quite time consuming and unsafe (Michael, Tanoto, Wibowo, Lutan, & Dharma, 2019). Some people who enter campus often claim to be students or lecturers so that parking fees are free. To apply the automation process to parking lots, a modeling system is needed as a reference in replacing some of the officers' functions. One of the most guaranteed system modeling methods that can be applied is image processing technology (Sarief et al., 2019).

Based on data from the South Sulawesi Regional Police Public Relations on November 30, 2016, it was recorded that during 2 weeks of zebra operations in a location, 504 traffic violations were found, namely 430 motorcyclists and the remaining 74 car drivers. The police number listed on the license plate of the vehicle can be used by the authorities as evidence of a motorist committing a traffic violation. The large number of vehicles makes it difficult for police officers to recognize vehicle number plates manually, so a system that can recognize vehicle license plates automatically and quickly is needed. Detection of Motor Vehicle License Plate Numbers Based on Digital Images Using Binaryization and Template Matching Methods

In this study, researchers used image processing to detect vehicle plate numbers in Indonesian format using template matching method. Template matching will compare input data with previously recognized data used for training. This method makes use of the similarity template to check the similarities between one image and another (Wibawa, 2020). The closer the pixel values are between the images, the closer they will be to the input image. The use of this method can be used in applications that use a template matching algorithm to recognize letters in documents in the form of digital (Hafidz, Ananda, & Akbar, 2019). Template matching is an example of an application that can recognize characters in digital images (Rohpandi, Sugiharto, & Aji Winara, 2015). This application modeling can be used as a reference in implementing the vehicle parking system on the Pancasila University campus where vehicle plate number detection is carried out automatically (Sarief et al., 2019).

With this application modeling, it is hoped that the detection process on vehicle number plates on the Pancasila University campus will take place faster because it is carried out automatically using a template matching algorithm so as to prevent the passing of parking fees for people claiming to be lecturers or students and also expected to prevent vehicle theft. In addition, the existence of this application can be important in the development of the Intelligent Transportation System (ITS) technology and security systems in Indonesia.

RESEARCH METHODS

Types of research

This research is an experimental research where trials are carried out to get the best accuracy from the knowledge gained in the training process.

Time and Place of Research

Data obtained from vehicle plates were collected from live photoshoots on the Pancasila University campus during March to June 2020.

Research Target / Subject

The subject of this study is the image of the vehicle plate both motorbikes and cars, where the
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License
T = is the pixel pattern of the template image.

Data, Instruments, and Data Collection Techniques

The data used in this study are primary data, where the data in the form of an image of the vehicle plate is taken directly at the research location. Image retrieval of vehicle plates that will enter from the campus entrance area. Image is taken using a camera that is positioned in the campus entrance area. The cameras are positioned in such a way that the captured image contains all parts of the vehicle’s license plate.

The camera used is high resolution so that the image captured is also high resolution so that the digital image information is more accurate. After the image from the vehicle containing the number plate is taken and put in a certain folder which will be processed using matlab software, the next process is preprocessing which consists of three stages, namely binary image (thresholding), grayscaling, and morphology (dilation, erosion and morphology of binary images).

Data analysis technique

From the results of calculations using the template matching method, evaluation is carried out by making the average accuracy of all data using equation (2):

\[
\text{Accuracy} = \frac{(\text{correct data} / N \text{ data}) \times 100\%}{\ldots (2)}
\]

RESULTS AND DISCUSSION

The initial step of image processing at the pre-processing stage aims to improve the original image so that it produces a better image for processing at the processing stage. The pre-processing stage to improve the image of motor vehicle license plates consisting of image input, grayscale, dilation and erosion, abstracts. The following is the process of the pre-processing stages:

1. Input Image

The data set retrieval process used as input to the system to be designed is a vehicle number plate image in .jpg format. The following is an overview of the image input process, this stage describes how the input image can appear on the layout axes GUIDE Matlab.

2. Grayscaling

In this grayscaling process, a colored input image can be converted into a grayscale image consisting of white and black using RGB color representation. Fig. 4 are the results of the process of changing the input image into a grayscale image.
4. Imsubtract
Imsubtract operation is the process of adding light or reducing light to the image. Imsubtract operation will add light to the dilation and erosion process, to clarify the results of dilation and erosion. Figure 7 below are the imsubstract process applied after the dilation and erosion process.

5. Convolution
Convolution is a process where an image is manipulated using an external mask to produce a new image. The following is the convolution process (Figure 8):

6. Imadjust
Imadjust is a process in which the convoluted image is adjusted to the image intensity value. Imadjust will map image intensity values to new values. Fig. 9 below imadjust processes are carried out.

7. Thresholding
At the threshold process, the intensity value of an image that is more than or equal to the threshold value will be changed to white (0), while the image intensity value that is less than the threshold value will be changed to black (1). If the pixel value is above an intensity value it will be changed to 0 (white), which means that the pixel is
the background, while the intensity value is below the specified value limit, the pixel will be changed to black (1) which is considered a character. The image resulting from the process will be subjected to a thresholding process then converted into a matrix that is sized according to the predetermined pixel size. Furthermore, it will be converted into a binary matrix vector form which only values 0 and 1 for each pixel. Figure 10 below are the results of the thresholding process.

8. Imfill

Imfill is a thresholding refinement stage. Imfill is used to fill in empty image areas such as holes. Figure 11 below are the imfill process:

9. Imrode

Imrode is an image abrasive process. Imrode is used to scrape the gray scale binary image from the imfill result. Figure 12 below are the imrode process.

10. Bwmorph

Bwmorph is a morphological operation process on binary images. Bwmorph is used for the process of removing interior pixels by leaving the outline of the image. Figure 13 below are bwmorph processes are carried out.

11. Segmentation

The segmentation process is an important initial step in the process of recognizing character patterns on vehicle number plates. The method used in the segmentation process is letter segmentation. To get the distance between letters, generally the output of image segmentation is in the form of binary coding where the desired object is black (1), while the background that is removed is white (0). In the segmentation process, it is done by mapping the number of black dots for each line in the image to the y-axis and each line of characters from the mapping results is mapped again to the x-axis. Fig. 14 below is the segmentation process.
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

