Pregnancy Risk Level Classification Using The CRISP-DM Method
Abstract
Independent midwife practices have the task of reminding and maintaining the quality of standardized reproductive health services for pregnant women. Independent midwife practices have had patient visits since the covid-19 pandemic from 2020 to 2021, especially at the yetti puranama midwife, which consists of 320 pregnancy examinations, 130 delivery care, and 50 referrals. The covid-19 pandemic has impacted maternal mortality rates because there are still many restrictions on all services. Maternal health services include pregnant women who are routinely unable to go to the puskesmas or other healthcare facilities due to fear of contracting covid-19, which delays the examination of pregnancy gravida, abortion, temperature, pregnancy distance, haemoglobin, blood pressure, ideal weight, and decisions. So that the problem that occurs is an increase in the risk of pregnancy, resulting in death and increased maternal mortality. In solving this problem, the research takes a machine-learning approach. The research aims to build a classification of pregnancy risk levels that can predict early treatment in this study using the random forest method with cross-validation 2. This study obtained the results of an accuracy value of 98%, precision of 94%, and recalled 100% in the random forest method.
Downloads
References
Adrian, M. R., Putra, M. P., & Rakhmawati, N. A. (2021). Perbandingan Metode Klasifikasi Random Forest dan SVM pada Anlisis Sentimen PSBB. Informatika UPGRIS, 7(1), 36–40. https://doi.org/10.26877/jiu.v7i1.7099
Akbar, F. M., Ali, M., & Zahro, H. Z. (2021). K-Means Clustering Untuk Pengelompokkan Tingkat Resiko Ibu Hamil Di Praktik Mandiri Bidan Upt Puskesmas Pandanwangi Malang. Jurnal Mahasiswa Teknik Informatika, 5(2), 581–588. https://doi.org/10.36040/jati.v5i2.3772
Apriliah, W., Kurniawan, I., Baydhowi, M., & Haryati, T. (2021). Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest. Jurnal Sistem Informasi, 10(1), 163–171. https://doi.org/10.32520/stmsi.v10i1.1129
Aziz, F. (2021). Klasifikasi Aktivitas Manusia menggunakan metode Ensemble Stacking berbasis Smartphone. Journal of System and Computer Engineering, 1(2), 106–111. https://doi.org/10.47650/jsce.v1i2.171
Badan Pusat Statistik Provinsi Bengkulu. (2021). Profil Kesehatan Ibu dan Anak Provinsi Bengkulu 2020. Bengkulu: Badan Pusat Statistik Provinsi Bengkulu. Retrieved from https://bengkulu.bps.go.id/publication/2021/07/02/e23d0b377ed0964bb9fc06c4/profil-kesehatan-ibu-dan-anak-provinsi-bengkulu-2020.html.
Bengkulu, D. K. P. (2021). Profil Kesehatan Provinsi Bengkulu Tahun 2021 ( provbengkulu dinkes, Ed.). dinas kesehatan provinsi bengkulu. dinkes.bengkuluprov.go.id
Byna, A. (2019). Penerapan Optimasi PSO untuk meningkatkan Akurasi Algoritma ID3 pada Prediksi Penyakit Ibu Hamil. Jurnal Teknologi Informasi Universitas Lambung Mangkurat, 4(2), 65–70. https://doi.org/10.20527/jtiulm.v4i2.40
Hikmatulloh, Rahmawati, A., Wintana, D., & Ambarsari, D. A. (2019). Penerapan Algoritma Iterative Dichotomiser Three (ID3) dalam mendiagnosa Kesehatan Kehamilan. Kumpulan Jurnal Ilmu Komputer, 6(2), 116–127. https://doi.org/10.20527/klik.v6i2.189
Putra, J. W. G. (2020). Pengenalan Konsep Pembelajaran Mesin dan Deep Learning (1.4). https://wiragotama.github.io/resources/ebook/intro-to-ml-secured.pdf
Kementerian Kesehatan RI. (2021). Profil Kesehatan Indonesia Tahun 2020. In Kementerian Kesehatan RI. https://doi.org/10.1524/itit.2006.48.1.6
Kustiyahningsih, Y., Mula’ab, & Hasanah, N. (2020). Metode Fuzzy ID3 Untuk Klasifikasi Status Preeklamsi Ibu Hamil. Teknika, 9(1), 74–80. https://doi.org/10.34148/teknika.v9i1.270
Mulaab, M. (2020). Data Mining Konsep dan Aplikasi. Malang: MNC Publishing.
Religia, Y., Nugroho, A., & Hadikristanto, W. (2021). Klasifikasi Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 187–192. https://doi.org/10.29207/resti.v5i1.2813
RI, K. (2021). Profil Kesehatan Indonesia 2021. https://www.kemkes.go.id/downloads/resources/download/pusdatin/profil-kesehatan-indonesia/Profil-Kesehatan-2021.pdf
Suryanegara, G. A. B., Adiwijaya, & Purbolaksono, M. D. (2021). Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi. Jurnal Rekayasa Sistem Dan Teknologi Informasi, 5(1), 114–122. https://doi.org/10.29207/resti.v5i1.2880
Wulandari, T., & Susanto, A. (2018). Deteksi Tingkat Risiko Kehamilan dengan Metode Fuzzy Mamdani dan Simple Additive Weighting. Jurnal Teknologi Dan Sistem Komputer, 6(3), 110–114. https://doi.org/10.14710/jtsiskom.6.3.2018.110-114
Pavlov, Y. L. (2018). Random Forests. Berlin: De Gruyter. Retrieved from https://www.degruyter.com/document/doi/10.1515/9783110941975/html?lang=en


Copyright (c) 2022 Reka Dwi Syaputra, Achmad Solichin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Jurnal Riset Informatika agrees to the following terms:
- The author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-NonCommercial 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- The author is permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-NonCommercial 4.0 Licence here: https://creativecommons.org/licenses/by-nc/4.0/.