Support Vector Classification with Hyperparameters for Analysis of Public Sentiment on Data Security in Indonesia
Abstract
The development of Information Technology makes increasing use of the internet. This raises the vulnerability of data security. Cyber attacks in Indonesia caused many tweets on social media Twitter. Some are positive, and some are negative. The problem of this study is to determine the public sentiment towards data security in Indonesia, while the purpose of this study is how the response or evaluation of the government of Indonesia to the many perceptions of people who lack confidence in data security in Indonesia. Data obtained from twitter with as much as 706 data was processed using python with a percentage of 10% test data and 90% training data. Weighting is done using TF-IDF, and then the Data is processed using the Support Vector Machine algorithm using the SVC (Support Vector Classification) library. Support Vector Classification with RBF kernel classifies Text well to obtain AUC value with good classification category. Utilizing one of the hyperparameter techniques, which is a grid search technique that can compare the accuracy of test results. The test results using SVC with RBF kernel obtained an accuracy value of 0.87, Precision of 0.82, recall of 0.94, and F1_Score of 0.87. This study is expected to be used by decision-makers related to public confidence in data security in Indonesia
Downloads
References
Ahmad, M., Aftab, S., Bashir, M. S., & Hameed, N. (2018). Sentiment Analysis using SVM : A Systematic Literature Review. (IJACSA) International Journal of Advanced Computer Science and Applications, 9(2), 182–188. https://doi.org/10.14569/IJACSA.2018.090226
Ahmad, M., Aftab, S., Bashir, M. S., Hameed, N., Ali, I., & Nawaz, Z. (2018). SVM optimization for sentiment analysis. International Journal of Advanced Computer Science and Applications, 9(4), 393–398. https://doi.org/10.14569/IJACSA.2018.090455
Andreya, E. (2022). Antisipasi Bersama Tingkatkan Sistem dan Cegah Serangan Siber. Aptika.Kominfo.Go.Id. https://aptika.kominfo.go.id/2022/09/antisipasi-bersama-tingkatkan-sistem-dan-cegah-serangan-siber/
Bayu, D. (2022). APJII: Pengguna Internet Indonesia Tembus 210 Juta pada 2022. DataIndonesia.Id. https://dataindonesia.id/digital/detail/apjii-pengguna-internet-indonesia-tembus-210-juta-pada-2022
Cervantes, J., Garcia-lamont, F., Rodríguez-mazahua, L., & Lopez, A. (2019). Neurocomputing A comprehensive survey on support vector machine classification : Applications, challenges and trends. Neurocomputing, xxxx. https://doi.org/10.1016/j.neucom.2019.10.118
Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–40. https://doi.org/10.1145/1961189.1961199
Chiny, M., Chihab, M., Chihab, Y., & Bencharef, O. (2021). LSTM, VADER and TF-IDF based Hybrid Sentiment Analysis Model. International Journal of Advanced Computer Science and Applications, 12(7), 265–275. https://doi.org/10.14569/IJACSA.2021.0120730
Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter. Smatika Jurnal, 10(02), 71–76. https://doi.org/10.32664/smatika.v10i02.455
Fitriyah, N., Warsito, B., & Maruddani, D. A. I. (2020). Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (SVM). Jurnal Gaussian, 9(3), 376–390. https://doi.org/10.14710/j.gauss.v9i3.28932
Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2008). A Practical Guide to Support Vector Classification. BJU International, 101(1), 1396–1400. http://www.csie.ntu.edu.tw/%7B~%7Dcjlin/papers/guide/guide.pdf
K, R. G. S., Verma, A. K., & Radhika, S. (2019). K-Nearest Neighbors and Grid Search CV Based Real Time Fault Monitoring System for Industries. 2019 5th International Conference for Convergence in Technology (I2CT), 9–13. https://doi.org/10.1109/I2CT45611.2019.9033691
Liu, M., & Yang, J. (2012). An improvement of TFIDF weighting in text categorization. 2012 International Conference on Computer Technology and Science (ICCTS 2012), 47(Iccts), 44–47. https://doi.org/10.7763/IPCSIT.2012.V47.9
Mahendrajaya, R., Buntoro, G. A., & Setyawan, M. B. (2019). Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine. Komputek, 3(2), 52–63. https://doi.org/10.24269/jkt.v3i2.270
Naz, S., Sharan, A., & Malik, N. (2018). Sentiment Classification on Twitter Data Using Support Vector Machine. 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), 676–679. https://doi.org/10.1109/WI.2018.00-13
Rahmawati, C., & Sukmasetya, P. (2022). Sentimen Analisis Opini Masyarakat Terhadap Kebijakan Kominfo atas Pemblokiran Situs non-PSE pada Media Sosial Twitter. JURIKOM (Jurnal Riset Komputer), 9(5), 1393–1400. https://doi.org/10.30865/jurikom.v9i5.4950
Rumlus, M. H., & Hartadi, H. (2020). Kebijakan Penanggulangan Pencurian Data Pribadi dalam Media Elektronik. Jurnal HAM, 11(2), 285–299. https://doi.org/10.30641/ham.2020.11.285-299
Tineges, R., Triayudi, A., & Sholihati, I. D. (2020). Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM). Jurnal Media Informatika Budidarma, 4(3), 650. https://doi.org/10.30865/mib.v4i3.2181
Wibowo, N. I., Maulana, T. A., Muhammad, H., & Rakhmawati, N. A. (2021). Perbandingan Algoritma Klasifikasi Sentimen Twitter Terhadap Insiden Kebocoran Data Tokopedia. JISKA (Jurnal Informatika Sunan Kalijaga), 6(2), 120–129. https://doi.org/10.14421/jiska.2021.6.2.120-129
Widyanuratikah, I. (2018, October 8). Indonesia Negara Ketiga Paling Sering Terkena Serangan Siber. Republika., Nasional. https://www.republika.co.id/berita/pg9slu354/indonesia-negara-ketiga-paling-sering-terkena-serangan-siber
Wisnubroto, K. (2021). Memastikan Data Pribadi Aman. Indonesia.Go.Id. https://www.indonesia.go.id/kategori/editorial/3272/memastikan-data-pribadi-aman
Yan, T., Shen, S.-L., Zhou, A., & Chen, X. (2022). Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), 1292–1303. https://doi.org/10.1016/j.jrmge.2022.03.002
Yin, J., & Li, Q. (2019). A semismooth Newton method for support vector classification and regression. Computational Optimization and Applications, 73(2), 477–508. https://doi.org/10.1007/s10589-019-00075-z


Copyright (c) 2022 Siti Ernawati, Risa Wati, Nuzuliarini Nuris

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Jurnal Riset Informatika agrees to the following terms:
- The author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-NonCommercial 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- The author is permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-NonCommercial 4.0 Licence here: https://creativecommons.org/licenses/by-nc/4.0/.