Enhancing Ulos Batik Pattern Recognition through Machine Learning: A Study with KNN and SVM

Authors

  • Nuke L. Chusna Universitas Krisnadwipayana, Indonesia
  • Ninuk Wiliani Universitas Siber Indonesia
  • Achmad Feri Abdillah Universitas Krisnadwipayana, Indonesia
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v6i3.311

Keywords:

image classification, Ulos batik, computer vision, K-Nearest Neighbors, Support Vector Machine

Abstract

This research aims to develop an automated classification system to accurately identify and classify Ulos batik patterns using K-Nearest Neighbors (K-NN) and Support Vector Machine (SVM) techniques. The method is based on computer vision technology and texture analysis using the Gray-Level Co-occurrence Matrix (GLCM). The dataset consists of 1,800 images of Ulos fabric categorized into six main motif classes. The preprocessing process involves converting images to grayscale and extracting features with GLCM. Two classification algorithms, K-NN and SVM, were used for modeling, with evaluation using confusion matrix metrics and Area Under Curve (AUC). Evaluation results show that the K-NN model has an accuracy of 82%, while SVM has an accuracy of 57%. The analysis also highlights the superiority of K-NN in distinguishing Ulos fabric patterns. This research contributes to cultural preservation and the development of the creative industry by introducing an effective automated classification system for Ulos fabric patterns.

Downloads

Download data is not yet available.

References

Ahmed Khan, T., Sadiq, R., Shahid, Z., Alam, M. M., & Mohd Su’ud, M. (2024). Sentiment Analysis using Support Vector Machine and Random Forest. Journal of Informatics and Web Engineering, 3(1), 67–75. https://doi.org/10.33093/jiwe.2024.3.1.5

Alamin, D., & Pratomo, A. H. (2024). Implementation of the Convolutional Neural Network Method in Image Classification of Mount Merapi. Telematika: Jurnal Informatika Dan Teknologi Informasi, 21(1), 79–91. Retrieved from http://www.jurnal.upnyk.ac.id/index.php/telematika/article/view/12082

Araaf, M. A., Nugroho, K., & Setiadi, D. R. I. M. (2023). Comprehensive Analysis and Classification of Skin Diseases based on Image Texture Features using K-Nearest Neighbors Algorithm. Journal of Computing Theories and Applications, 1(1), 31–40. https://doi.org/10.33633/jcta.v1i1.9185

Azis, A. I. S., Budy Santoso, & Serwin. (2020). LL-KNN ACW-NB: Local Learning K-Nearest Neighbor in Absolute Correlation Weighted Naïve Bayes for Numerical Data Classification. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(1), 28–36. https://doi.org/10.29207/resti.v4i1.1348

Bawa, A., Samanta, S., Himanshu, S. K., Singh, J., Kim, J. J., Zhang, T., … Ale, S. (2023). A support vector machine and image processing based approach for counting open cotton bolls and estimating lint yield from UAV imagery. Smart Agricultural Technology, 3, 100140. https://doi.org/10.1016/j.atech.2022.100140

Bharadiya, J. P. (2023). Convolutional Neural Networks for Image Classification. International Journal of Innovative Science and Research Technol, 8(5), 673–677. https://doi.org/10.5281/zenodo.8020781

Budianita, E., Jasril, J., & Handayani, L. (2015). Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi Berbasis Web. Jurnal Sains Dan Teknologi Industri, 12(2), 242–247. Retrieved from http://ejournal.uin-suska.ac.id/index.php/sitekin/article/view/1005

Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & Lopez, A. (2020). A comprehensive survey on support vector machine classification: Applications, challenges, and trends. Neurocomputing, 408, 189–215. https://doi.org/10.1016/j.neucom.2019.10.118

Deitsch, S., Christlein, V., Berger, S., Buerhop-Lutz, C., Maier, A., Gallwitz, F., & Riess, C. (2019). Automatic classification of defective photovoltaic module cells in electroluminescence images. Solar Energy, 185, 455–468. https://doi.org/10.1016/j.solener.2019.02.067

Dinesh, P., Vickram, A. S., & Kalyanasundaram, P. (2024). Medical image prediction for diagnosis of breast cancer disease comparing the machine learning algorithms: SVM, KNN, logistic regression, random forest, and decision tree to measure accuracy. AIP Conference Proceedings, 2853(1). AIP Publishing. https://doi.org/10.1063/5.0203746

Emmya, K. B. K., Kristian, S., & Jekmen, S. (2024). Fungsi dan Motif Ulos Mangiring pada Etnik Batak Toba Kajian Semiotika. Jurnal Pendidilkan Tambusai, Vol 8, No(1), 11737–11743. Retrieved from https://www.jptam.org/index.php/jptam/article/view/14154

Hosseini, A., Eshraghi, M. A., Taami, T., Sadeghsalehi, H., Hoseinzadeh, Z., Ghaderzadeh, M., & Rafiee, M. (2023). A mobile application based on efficient, lightweight CNN model for classification of B-ALL cancer from non-cancerous cells: A design and implementation study. Informatics in Medicine Unlocked, 39, 101244. https://doi.org/10.1016/j.imu.2023.101244

Maurício, J., Domingues, I., & Bernardino, J. (2023). Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review. Applied Sciences (Switzerland), 13(9), 5521. https://doi.org/10.3390/app13095521

Nasir, N., Kansal, A., Barneih, F., Al-Shaltone, O., Bonny, T., Al-Shabi, M., & Al Shammaa, A. (2023). Multi-modal image classification of COVID-19 cases using computed tomography and X-rays scans. Intelligent Systems with Applications, 17, 200160.

Peryanto, A., Yudhana, A., & Umar, R. (2020). Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation. Journal of Applied Informatics and Computing, 4(1), 45–51. https://doi.org/10.30871/jaic.v4i1.2017

Pinto, M. S., Winzeck, S., Kornaropoulos, E. N., Richter, S., Paolella, R., Correia, M. M., … Newcombe, V. F. J. (2023). Use of Support Vector Machines Approach via ComBat Harmonized Diffusion Tensor Imaging for the Diagnosis and Prognosis of Mild Traumatic Brain Injury: A CENTER-TBI Study. Journal of Neurotrauma, 40(13–14), 1317–1338. https://doi.org/10.1089/neu.2022.0365

Priscila, S. S., Rajest, S. S., Regin, R., & ... (2023). Classification of Satellite Photographs Utilizing the K-Nearest Neighbor Algorithm. Central …, 4(6), 53–71. Retrieved from https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/473

Roy, A., & Chakraborty, S. (2023). Support vector machine in structural reliability analysis: A review. Reliability Engineering and System Safety, 233, 109126. https://doi.org/10.1016/j.ress.2023.109126

Siagian, R. J. (2024). The Symbolic Meaning of Traditional Woven Fabric Ulos as A Spiritual Expression in Batak Toba Rituals. International Journal of Religion, 5(5), 200–209.

Sitohang, D. H., Siregar, A., & Nurhidayati, S. A. (2023). Sejarah Dan Makna Ulos Batak Toba. Jurnal Ilmiah Widya Pustaka Pendidikan, 11(2), 27–34. Retrieved from https://jiwpp.unram.ac.id/index.php/widya/article/view/116

Syriopoulos, P. K., Kalampalikis, N. G., Kotsiantis, S. B., & Vrahatis, M. N. (2023). k NN Classification: a review. Annals of Mathematics and Artificial Intelligence, 1–33.

Tang, Y., Chang, Y., & Li, K. (2023). Applications of K-nearest neighbor algorithm in intelligent diagnosis of wind turbine blades damage. Renewable Energy, 212, 855–864.

Thanki, R. (2023). A deep neural network and machine learning approach for retinal fundus image classification. Healthcare Analytics, 3, 100140.

Tinambunan, Edison R.L. (2023). Ulos Batak Toba: Makna Religi dan Implikasinya pada Peradaban dan Estetika. Forum, 52(2), 122–142. https://doi.org/10.35312/forum.v52i2.583

Tinambunan, Edison Robertus Lamarsen. (2023). Batak Toba Ethnic in Indonesia as a Locus Theologicus: Exploring the Spiritual, Wisdom and Aesthetic Values of Ragi Idup Ulos. International Journal of Indonesian Philosophy & Theology, 4(1), 53–63. https://doi.org/10.47043/ijipth.v4i1.47

Valkenborg, D., Rousseau, A. J., Geubbelmans, M., & Burzykowski, T. (2023). Support vector machines. American Journal of Orthodontics and Dentofacial Orthopedics, 164(5), 754–757. https://doi.org/10.1016/j.ajodo.2023.08.003

Downloads

Published

2024-06-15

How to Cite

Chusna, N. L., Wiliani, N., & Abdillah, A. F. (2024). Enhancing Ulos Batik Pattern Recognition through Machine Learning: A Study with KNN and SVM. Jurnal Riset Informatika, 6(3), 175–184. https://doi.org/10.34288/jri.v6i3.311

Issue

Section

Articles