Integration of Adasyn Method with Decision Tree Algorithm in Handling Imbalance Class for Loan Status Prediction
DOI:
https://doi.org/10.34288/jri.v6i3.299Keywords:
ADASYN, Decision Tree, Imbalance Class, Loans, Oversampling TechniquesAbstract
Determining the provision of credit is generally carried out based on measuring credibility using credit analysis principles (5C principles). However, this method requires quite a long processing time and is very susceptible to subjective judgments which might influence the final results. This research uses data mining techniques by developing modeling on loan status prediction datasets. The stages in this research include data preprocessing, modeling, and evaluation using accuracy metrics and ROC graphs. In this analysis, it is known that there is a class imbalance in the processed dataset, so an oversampling technique must be carried out. This research uses the ADASYN (Adaptive Synthetic) Oversampling technique to ensure the class distribution is more balanced. Then, the ADASYN technique is integrated with the Decision Tree Algorithm to build a prediction model. The research results show that the two methods can increase prediction accuracy by 12.22%, from 73,91% to 85.22%. This improvement was obtained by comparing the accuracy results before and after using the ADASYN Oversampling technique. This finding is important because it proves that implementing such integration modeling can significantly improve the performance of classification models and provide strong potential for practical application in helping more effective loan status predictions.
Downloads
References
Amien, J. Al, Yoze Rizki, & Mukhlis Ali Rahman Nasution. (2022). Implementasi Adasyn Untuk Imbalance Data Pada Dataset UNSW-NB15 Adasyn Implementation For Data Imbalance on UNSW-NB15 Dataset. Jurnal CoSciTech (Computer Science and Information Technology), 3(3), 242–248. https://doi.org/10.37859/coscitech.v3i3.4339
Badan Pusat Statistik. (2019). Posisi Kredit Perbankan Menurut Jenis Penggunaan Pada Bank Pemerintah (Juta Rupiah). BPS. https://ppukab.bps.go.id/indicator/105/158/1/posisi-kredit-perbankan-menurut-jenis-penggunaan-pada-bank-pemerintah-.html
Eltania, M. (2022). Pengaruh Suku Bunga Kredit, Inflasi, Dan Nilai Tukar Terhadap Jenis Penyaluran Kredit. Contemporary Studies in Economic, Finance and Banking, 1 NO 1(1), 25–37.
GAO Report. (2023). Pandemic Assistance Likely Helped Reduce Balances, and Credit Terms Varied Among Demographic Groups. U.S. Government Accountability Office. https://www.gao.gov/products/gao-23-105269
Hermawan, F. F., & Yamasari, Y. (2022). Implementasi K-Nearest Neighbor dengan Pemilihan Fitur pada Aplikasi Prediksi Kelayakan Pengajuan Pinjaman. Journal of Informatics and Computer Science (JINACS), 3(04), 411–424. https://doi.org/10.26740/jinacs.v3n04.p411-424
Hidayat, W., Ardiansyah, M., & Setyanto, A. (2021). Pengaruh Algoritma ADASYN dan SMOTE terhadap Performa Support Vector Machine pada Ketidakseimbangan Dataset Airbnb. Edumatic: Jurnal Pendidikan Informatika, 5(1), 11–20. https://doi.org/10.29408/edumatic.v5i1.3125
Monika, A. P., Risti, F. E. P., Binanto, I., & Sianipar, N. F. (2023). Perbandingan Algoritma Klasifikasi Random Forest , Gaussian Naive Bayes , dan K-Nearest Neighbor untuk Data Tidak Seimbang dan Data yang diseimbangkan dengan Metode Adaptive Synthetic pada Dataset LCMS Tanaman Keladi Tikus. Jurnal Seminar Nasional Teknik Elektro, Informatika & Sistem Informasi (SINTaKS), 3–7.
Nurdiyanto, I., Nurdiawan, O., Irma Purnamasari, A., & Ade Kurnia, D. (2022). Penentuan Keputusan Pemberian Pinjaman Kredit Menggunakan Algoritma C.45. Jurnal Dadta Science Dan Informatika, 2(1), 1–5.
Prasojo, B., & Haryatmi, E. (2021). Analisa Prediksi Kelayakan Pemberian Kredit Pinjaman dengan Metode Random Forest. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(2), 79–89. https://doi.org/10.25077/teknosi.v7i2.2021.79-89
Pratama, I., Chandra, A. Y., & Presetyaningrum, P. T. (2022). Seleksi Fitur dan Penanganan Imbalanced Data menggunakan RFECV dan ADASYN. Jurnal Eksplora Informatika, 11(1), 38–49. https://doi.org/10.30864/eksplora.v11i1.578
Pratiwi, A. A., Saraswati, W. T., Ardiansyah, R. F., Rouf, E. H., & Pratama, R. A. (2023). Determining The Loan Feasiblity of Bank Customers Using Naïve Bayes, K-Nearest Neighbors And Linear Regression Algorithms. Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI), 6(3), 226–236.
Prawira, A., Arisandi, D., & Sutrisno, T. (2022). Penerapan Algoritma Naive Bayes dan Multiple Linear Regression Untuk Prediksi Status dan Plafon Kredit (Studi Kasus: Bank ABC). Journal on Education, 5(1), 1075–1087. https://doi.org/10.31004/joe.v5i1.720
Sitepu, R., & Manohar, M. (2022). Implementasi Algoritma K-Nearest Neigbor Untuk Klasifikasi Pengajuan Kredit. Jurnal Sistem Informasi, Teknik Informatika Dan Teknologi Pendidikan, 1(2), 49–56. https://doi.org/10.55338/justikpen.v1i2.6
Syafudin, S., Nugraha, R. A., Handayani, K., Gata, W., & Linawati, S. (2021). Prediksi Status Pinjaman Bank dengan Deep Learning Neural Network (DNN). Jurnal Teknik Komputer AMIK BSI, 7(2), 130–135.
Tarigan, I. F., Hartama, D., Suhada, Saifullah, & Saragih, I. S. (2021). Penerapan Data Mining Pada Prediksi Kelayakan Pemohon Kredit Mobil Dengan K-Medoids Clustering. KLIK: Kajian Ilmiah Informatika …, 1(4), 170–179. http://www.djournals.com/klik/article/view/153
Ubaedi, I., & Djaksana, Y. M. (2022). Optimasi Algoritma C4.5 Menggunakan Metode Forward Selection Dan Stratified Sampling Untuk Prediksi Kelayakan Kredit. JSiI (Jurnal Sistem Informasi), 9(1), 17–26. https://doi.org/10.30656/jsii.v9i1.3505
Yenila, F., Marfalino, H., & Defit, S. (2023). Model Analisis Machine Learning dengan Pendekatan Deep Learning dalam Penentuan Kolektabilitas. JST (Jurnal Sains Dan Teknologi), 12(2), 403–414. https://doi.org/10.23887/jstundiksha.v12i2.54035
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ami Rahmawati, Ita Yulianti, Tati Mardiana, Denny Pribadi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.