K-Means Binary Search Centroid with Dynamic Cluster for Java Island Health Clustering
DOI:
https://doi.org/10.34288/jri.v5i3.218Keywords:
Binary Search Centroid, Clustering, Dynamic K-Means, Java Island Health ProfileAbstract
This study is focused on determining the health status of each district/city in Java using the K-means Binary Search Centroid and Dynamic Kmeans algorithms. The research data uses data on the health profile of Java Island in 2020. Comparative algorithms were tested using the Davies Bound Index and Calinski-Harabasz Index methods on the traditional k-means algorithm and dynamic binary search centroid k-means. Based on the test, 5 clusters were found in the distribution area, including 11 regions with very high health quality cluster 1, 24 regions with high health quality, 28 regions with moderate health quality, and 28 clusters 4 with low health quality, 45 regions, and cluster 5 with poor health quality is 11 regions, with the best validation value of DBI 1.8175 and CHI 67.7868. Overall optimization of the dynamic k-means algorithm based on binary search centroid results in a better average cluster quality and a smaller number of iterations than the traditional k-means algorithm. The test results can be used as one of the best methods in evaluating the level of health in the Java Island area and a reference for decision-making in determining policies for related agencies.
Downloads
References
A. F. Khairati, A. A. Adlina, G. F. Hertono, and B. D. Handari, “Kajian Indeks Validitas pada Algoritma K-Means Enhanced dan K-Means MMCA,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 2, pp. 161–170, 2019.
Akbari Gumilar and Yusrila Kerlooza. “Peningkatan Hasil Cluster Menggunakan Algoritma Dynamic K-means dan K-means Binary Search Centroid.” Jurnal Tata Kelola dan Kerangka Kerja Teknologi Informasi, vol. 4, no. 2, pp. 25-33, 2018.
Badan Pusat Statistik Pulau Jawa, “Statistik Kesehatan Pulau Jawa 2020”, Available: https://jatim.bps.go.id/publication/2021/08/05/a70cbc1ca224552d5e0f5000/statistik-kesehatan-provinsi-jawa-timur-2020.html. [Online]. [Accessed: 05-August-2022].
C. Kamila, M. Adiyatma, G. R. Namang, and R. R. F. Syah, “Systematic Literature Review: Penggunaan Algoritma K-Means untuk Clustering di Indonesia dalam Bidang Pendidikan,” Informatika dan Teknologi (Intech), vol. 2, no. 1, pp. 19–24, 2021.
C. Satria and A. Anggrawan, “Aplikasi K-Means Berbasis Web untuk Klasifikasi Kelas Unggulan,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 1, pp. 111 – 124, nov 2021.
C. Sreedhar, N. Kasiviswanath, and P. Chenna Reddy, “Clustering Large Datasets Using K-Means Modified Inter and Intra Clustering (KM-I2C) in Hadoop,” Journal of Big Data, vol. 4, no. 27, pp. 1 – 19, 2017.
Dinas Kesehatan Pulau Jawa, “Profil Kesehatan Pulau Jawa 2020”, Available: https://dinkes.jatimprov.go.id/userfile/dokumen/PROFIL%20KESEHATAN%202020.pdf. [Online]. [Accessed: 05-August-2022].
H. Santoso, H. Magdalena, H. Wardhana, and I. Artikel, “Aplikasi Dynamic Cluster pada K-Means Berbasis Web untuk Klasifikasi Data Industri Rumahan,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 3, pp. 541–554, 2022.
Harani, Nisa Hanum, Cahyo Prianto, and Fikri Aldi Nugraha. "Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python." Jurnal Manajemen Informatika (JAMIKA), Vol. 10 No. 2, pp. 133-146, 2020.
Islami, Bagus Muhammad, Cepy Sukmayadi, and Tesa Nur Padilah. “Clustering of Health Facilities Based on Districts in Karawang With the K-Means Algorithm.” BINA INSANI ICT JOURNAL, Vol. 8, No. 1, pp. 83-92, 2021.
K. Ariasa, I. G. A. Gunadi, and I. M. Candiasa, “Optimasi Algoritma Klaster Dinamis pada K-Means dalam Pengelompokkan Kinerja Akademik Mahasiswa (Studi Kasus: Universitas Pendidikan Ganesha),” Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, vol. 9, no. 2, pp. 181–193, 2020.
L. Suryani, “Evaluasi Sistem Informasi Kesehatan dengan Pendekatan Health Metrics Network (HMN) di Dinas Kesehatan Kota Pagar Alam Tahun 2021,” J. Kesehat. Saelmakers PERDANA, vol. 5, pp. 97–103, 2022.
Luthfi, Emir, and Arie Wahyu Wijayanto. “Analisis perbandingan metode hirearchical, k-means, dan k-medoids clustering dalam pengelompokkan indeks pembangunan manusia Indonesia.” INOVASI, Vol. 17, No. 4, pp. 761-773, 2021.
R. M. Alguliyev, R. M. Aliguliyev, and F. J. Abdullayeva, “PSO+K-Means Algorithm for Anomaly Detection in Big Data,”Statistics, Optimization and Information Computing, vol. 7, no. 2, pp. 348–359, 2019.
Siagian, Romadansyah, Pahala Sirait, and Arwin Halim. “The Implementation of K-Means dan K-Medoids Algorithm for Customer Segmentation on E-commerce Data Transactions.” Sistemasi: Jurnal Sistem Informasi, Vol. 11 No.2, pp. 260-270, 2022.
Supriyatna, Adi, et al. Rice productivity analysis by province using K-means cluster algorithm. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Vol. 771, No. 1, pp. 012025, 2020.
W. Widiarina and R. S. Wahono, “Algoritma Cluster Dinamik untuk Optimasi Cluster pada Algoritma K-Means dalam Pemetaan Nasabah Potensial,” Journal of Intelligent Systems, vol. 1, no. 1, pp. 33–36, 2015.
Y. A. Wijaya, D. A. Kurniady, E. Setyanto, W. S. Tarihoran, D. Rusmana, and R. Rahim, “Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities,” TEM Journal, vol. 10, no. 3, pp. 1099–1103, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhammad Andryan Wahyu Saputra, Muhammad Faisal, Ririen Kusumawati
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.