The Implementation of C4.5 Algorithm for Determining the Department of Vocational High School
DOI:
https://doi.org/10.34288/jri.v5i2.211Keywords:
C4.5 Algorithm, Department Selection, Recommendation System, Vocational SchoolAbstract
The selection of departments in vocational high schools (SMK) is a must for students to determine the concentration of student learning interest for three years in a school. The lack of student knowledge and outreach about this department caused many students to choose their majors by the most choices and following other students. This problem can cause some difficulties for the students to participate in learning, and most fail. Students must select their major based on their interests, abilities, and talents because every student has different abilities and talents. The C4.5 algorithm can provide convenience in grouping students based on majors. Using the decision tree method with attributes such as grades in mathematics, English, interests, and talents, the system can recommend majors based on students' interest levels. The results of this study are the determination of the departments with the accuracy of the calculation using the confusion matrix method with a 98,55% accuracy rate and 100% recall rate value.
Downloads
References
Azwanti, N. (2018). Algoritma C4.5 Untuk Memprediksi Mahasiswa Yang Mengulang Mata Kuliah (Studi Kasus Di Amik Labuhan Batu). Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 9(1), 11–22. https://doi.org/10.24176/simet.v9i1.1627
Baktiar, A. (2022). Decission Tree Sebagai Metode Penentuan Penjurusan Perguruan Tinggi Berdasarkan Minat Dan Bakat Melalui Data Raport Dengan Uji Algoritma C4 . 5. Jurnal Pilar Teknologi, 7(1), 40–45. https://doi.org/10.33319/piltek.v7i1.110
Darmawan, E. (2018). C4.5 Algorithm Application for Prediction of Self Candidate New Students in Higher Education. Jurnal Online Informatika, 3(1), 22. https://doi.org/10.15575/join.v3i1.171
Khairina, D. M., Ramadhani, F., Maharani, S., & Hatta, H. R. (2015). Department Recommendations for Prospective Students Vocational High School of Information Technology with Naïve Bayes Method. 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 92–96. https://doi.org/10.1109/ICITACEE.2015.7437777
Kurniasari, R., & Fatmawati, A. (2019). Penerapan Algoritma C4.5 Untuk Penjurusan Siswa Sekolah Menengah Atas. Jurnal Ilmiah Komputer Dan Informatika (KOMPUTA), 8(1), 19–27. https://doi.org/10.34010/KOMPUTA.V8I1.3045
Larose, D. T. (2005). Discovering Knowledge in Data: An Introduction to Data Mining. In Discovering Knowledge in Data: An Introduction to Data Mining (2nd ed., pp. 1–222). John Willey & Sons Inc. https://doi.org/10.1002/0471687545
Luvia, Y. S., Windarto, A. P., Solikhun, S., & Hartama, D. (2017). Penerapan Algoritma C4.5 Untuk Klasifikasi Predikat Keberhasilan Mahasiswa Di AMIK Tunas Bangsa. Jurasik (Jurnal Riset Sistem Informasi Dan Teknik Informatika), 1(1), 75–79. https://doi.org/10.30645/jurasik.v1i1.12
Mulyana, S., Hartati, S., Wardoyo, R., & Winarko, E. (2015). Case-Based Reasoning for Selecting Study Program in Senior High School. International Journal of Advanced Computer Science and Applications, 6(4), 136–140. https://doi.org/10.14569/ijacsa.2015.060418
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711. http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/369
Prabowo, I. M., & Subiyanto, S. (2017). Sistem Rekomendasi Penjurusan Sekolah Menengah Kejuruan Dengan Algoritma C4.5. Jurnal Kependidikan, 1(1), 139–149. https://doi.org/10.21831/jk.v1i1.8964
Puspitasari, C. (2020). Implementation of C4.5 Method To Determine the Factor of Being Late for Coming To School. Jurnal Riset Informatika, 2(3), 115–120. https://doi.org/10.34288/jri.v2i3.132
Soufitri, F., Purwawijaya, E., Hasibuan, E. H., & Singarimbun, R. N. (2021). Testing C4.5 Algorithm Using RapidMiner Applications in Determining Customer Satisfaction Levels. Jurnal INFOKUM, 9(2), 510–517. https://infor.seaninstitute.org/index.php/infokum/article/view/198
Sutrisno, M., & Budiyanto, U. (2019). Intelligent System for Recommending Study Level in English Language Course Using CBR Method. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 153–158. https://doi.org/10.23919/EECSI48112.2019.8977047
Swastina, L. (2018). Penerapan Algoritma C4 . 5 Untuk Penentuan Jurusan Mahasiswa. Gema Aktualita, 2(1), 93–98. https://doi.org/10.24252/insypro.v6i2.7912
Turban, E., E. Aronson, J., & Liang, T.-P. (2007). Decision Support Systems and Business Intelligence. Decision Support and Business Intelligence Systems, 7/E, 1–35. https://doi.org/10.1017/CBO9781107415324.004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mirza Sutrisno, Jefri Kusuma Rambe, Asruddin, Ade Davy Wiranata

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.