Comparison of Breast Cancer Classification Using Decision Tree ID3 and K-Nearest Neighbors Algorithm to Predict the Best Performance of Algorithm

Authors

  • Zyhan Faradilla Daldiri Universitas Pancasila
  • Desti Fitriati Universitas Pancasila
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v5i2.206

Keywords:

Breast cancer, Classification, Comparison, Decision Tree Algorithm, K-Nearest Neighbors Algorithm, Woman

Abstract

One of the leading causes of death is cancer. The most common cancer in women is breast cancer. Breast cancer (Carcinoma mammae) is a malignant neoplasm originating from the parenchyma. Breast cancer ranks first in terms of the highest number of cancers in Indonesia and is among the first contributors to cancer deaths. Globocan data in 2020 shows that the number of new breast cancer cases reached 68,858 (16.6%) of the total 396,914 new cancer cases in Indonesia. Meanwhile, deaths reached more than 22 thousand cases (Romkom, 2022). This death rate is increasing due to insufficient information about breast cancer’s early symptoms and dangers. Of this lack of information, a system is needed that can provide information about breast cancer, such as early diagnosis. Several parameters and classification data mining techniques can predict which patients will develop breast cancer and which do not. In this study, a comparison of the classification of breast cancer using the Decision Tree ID3 algorithm and the K-Nearest Neighbors algorithm will be carried out. Attribute data consists of Menopause, Tumor-Size, Node-Caps, Deg-Malig, Breast-Squad, and Irradiant. The main objective of this study is to improve classification performance in breast cancer diagnosis by applying feature selection to several classification algorithms. The Decision Tree ID3 algorithm has an accuracy rate of 93.333%, and the K-Nearest Neighbors algorithm has an accuracy rate of 76.6667%.

Downloads

Download data is not yet available.

References

Arie Wijaya, Y., Bahtiar, A., Kaslani, K., & R, N. (2021). Analisa klasifikasi menggunakan algoritma decision tree pada data log firewall. Jurnal Sistem Informasi Dan Manajemen, 9(3), 256–264. https://ejournal.stmikgici.ac.id/index.php/jursima/article/view/303/196

Bahri, S., & Lubis, A. (2020). Metode klasifikasi devision tree untuk memprediksi juara english premier league. Jurnal Sintaksis: Pendidikan Guru Sekolah Dasar, IPA, IPS, Dan Bahasa Indonesia, 2(1), 63–70. https://jurnal.stkipalmaksum.ac.id/index.php/Sintaksis/article/view/47

Buana Briliant, J. (2020). Proses asuhan gizi terstandar dan kualitas hidup pada pasien kanker payudara di RS Panti Rapih Yogyakarta. http://eprints.poltekkesjogja.ac.id/id/eprint/2734

Hasanah, A. (2018). Gambaran faktor yang mempengaruhi pemeriksaan diri ke pelayanan kesehatan pada penderita kanker payudara. http://repository.unair.ac.id/id/eprint/73250

Kementrian Kesehatan Indonesia. (2022, February 4). Kanker payudara paling banyak di Indonesia, Kemenkes targetkan pemeratan pelayanan kesehatan. Https://Www.Kemkes.Go.Id/Article/View/22020400002/Kanker-Payudara-Paling-Banyak-Di-Indonesia-Kemenkes-Targetkan-Pemerataan-Layanan-Kesehatan.Html.

Mustafa, Syukri. M., & Wayan Simpen, I. (2019). Implementasi algoritma K-Nearest Neighbor (KNN) untuk memprediksi pasien terkena penyakit diabetes pada Puskesmas Manyampa Kabupaten Bulukumba. Pro Siding Seminar Ilmiah Sistem Informasi Dan Teknologi Informasi, VIII(1), 1–10. https://ejurnal.dipanegara.ac.id/index.php/sisiti/article/view/1%20-10

Prakarsya, A., & Prambayun, A. (2020). Implementasi data mining untuk prediksi pembayaran virus HIV/AIDS di Bandar Lampung dengan teknik decision tree. Jurnal Siskomti, 3(2), 18–26. https://www.ejournal.lembahdempo.ac.id/index.php/SISKOMTI/article/download/120/93/

Ramadhan, I., & Kurniawati, K. (2020). Data mining untuk klasifikasi penderita kanker payudara berdasarkan data dari University Medical Center menggunakan algoritma naïve bayes. JURIKOM (Jurnal Riset Komputer), 7(1), 21–27. https://doi.org/10.30865/jurikom.v7i1.1755

Rionaldi, R. (2022, July 24). Klasifikasi data mining menggunakan algoritma decision tree. Https://Lab_adrk.Ub.Ac.Id/Id/Klasifikasi-Data-Mining-Menggunakan-Algoritma-Decision-Tree/.

Setiawan, A., A. I. Nahusuly, B. J., Aulia Yuliandi Putri, F., Raditya, A., & Susrama Mas Diyasa, I. G. (2020). Case based reasoning menggunakan algoritma K-Nearest Neigbors untuk penanganan penyakit ikan cupang hias. Jurnal Teknologi Informasi Dan Komunikasi, XV(2), 1–5. https://doi.org/https://doi.org/10.33005/scan.v15i2.2082

Setio, P. B. N., Saputro, D. R. S., & Winarno, B. (2020). Klasifikasi dengan pohon keputusan berbasis algoritme C4.5. Prosiding Seminar Nasional Matematika 3, 3, 64–71. https://journal.unnes.ac.id/sju/index.php/prisma/

Zulfa, I., Rayuwati, R., & Koko, K. (2020). Implementasi data mining untuk menentukan strategi penjualan buku bekas dengan pola pembelian konsumen menggunakan metode apriori. Teknika: Jurnal Sains Dan Teknologi, 16(1), 69–82. https://doi.org/10.36055/tjst.v16i1.7601

Downloads

Published

2023-03-25

How to Cite

Daldiri, Z. F., & Fitriati, D. (2023). Comparison of Breast Cancer Classification Using Decision Tree ID3 and K-Nearest Neighbors Algorithm to Predict the Best Performance of Algorithm. Jurnal Riset Informatika, 5(2), 177–186. https://doi.org/10.34288/jri.v5i2.206

Issue

Section

Articles

Most read articles by the same author(s)