ANALYSIS OF DYNAMIC TIME WARPING IN THE DEVELOPMENT OF GROSS REGIONAL DOMESTIC PRODUCT YOGYAKARTA

Authors

  • Inggrid Septa Narendra Universitas Islam Indonesia
  • Muhammad Muhajir Universitas Islam Indonesia
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v4i4.175

Keywords:

Clustering Hierarki, Dynamic Time Warping, Dynamic Location Quotient

Abstract

Poverty in Indonesia has become a common thing that is still difficult to handle due to the presence of the covid virus outbreak attacks are causing the inability to buy and sell transactions, export and import goods and services, then the level of inequality increases. The tool measures the inequality level in an area seen from the Gini Ratio value. The Gini Ratio notes that the DI Yogyakarta province had the highest index value in Indonesia of 0,437 in September 2020. So this study aims to minimize the inequality in the DI Yogyakarta province by using the clustering method and Dynamic Location Quotient (DLQ). The clustering method with a hierarchical algorithm using the Dynamic Time Warping (DTW) distance and the DLQ method to predict regional economic sectors. Based on the result of the clustering analysis, there were 2 clusters, and the DLQ analysis obtained as many as 11 essential and 6 NPN-base sectors. Cluster 1 has 10 GRDP sectors with two industries that will become non-base sectors in the future, while cluster 2 has 7 GRDP sectors with three sectors it will become base sectors in the future.

Downloads

Download data is not yet available.

References

Alwi, W. (2018). Analisis Klaster untuk Pengelompokkan Kabupaten/Kota di Provinsi Sulawesi Selatan Berdasarkan Indikator Kesejahteraan Rakyat. Jurnal MSA (Matematika Dan Statistika Serta Alplikasinya), 6(1), 35. doi:10.24252/msa.v6i1.4782

Ayundari, I., & Sutikno. (2019). Penentuan Zona Musim di Mojokerto Menurut Karakteristik Curah Hujan Dengan Metode Time Series Based Clustering. Inferensi, 2(1), 63–70. dx.doi.org/10.12962/j27213862.v2i2.6819

Badan Pusat Statistik. (2021a). Gini Ratio Maret 2021 tercatat sebesar 0,384. Badan Pusat Statistik. https://www.bps.go.id/pressrelease/2021/07/15/1845/gini-ratio-maret-2021-tercatat-sebesar-0-384-.html

Badan Pusat Statistik. (2021b). Gini Ratio Menurut Provinsi dan Daerah 2019-2020. Badan Pusat Statistik. https://www.bps.go.id/indicator/23/98/2/gini-ratio-menurut-provinsi-dan-daerah.html

Dias, A. R. da S., & Santos, C. T. dos. (2013). A cophenetic correlation coefficient for Tocher's Method. Pesq. Agropec. Bras., Brasília, 48(6), 589–596. doi.org/10.1590/S0100-204X2013000600003

Fadliana, A., & Rozi, F. (2015). Penerapan Metode Agglomerative Hierarchical Clustering Untuk Klarifikasi Kabupaten/Kota Di Propinsi Jawa Timur Berdasarkan Kualitas Pelayanan Keluarga Berencana. Jurnal Matematika Murni Dan Aplikasi, 4(1), 35–40. doi.org/10.18860/ca.v4i1.3172

Gujarati, D. N., & Porter, C. D. (2015). Dasar-dasar ekonometrika (Edisi 5). Salemba Empat.

Hair, J. F., Anderson, R. E., Tatham, R. L., Babin, B. J., & Black, W. C. (2006). Multivariate Data Analysis Sixth Edition. Pearson Eduaction, Inc.

Hediyati, D., & Suartana, I. M. (2021). Penerapan Principal Component Analysis(PCA) Untuk Reduksi Dimensi Pada Proses Clustering Data Produksi Pertanian Di Kabupaten Bojonegoro. Journal Information Engineering and Educational Technology, 5(2), 49–54. doi.org/10.26740/jieet.v5n2.p49-54

Hidayat, A. (2012). Klasik, Uji Pearson Product Moment dan Asumsi. Statistikian.Com. https://www.statistikian.com/2012/07/pearson-dan-asumsi-klasik.html

Irawan, A. D., & Sulistyo, A. Q. P. (2022). Pengaruh Pandemi Dalam Menciptakan Ketimpangan Sosial Ekonomi Antara Pejabat Negara Dan Masyarakat. Jurnal Citizenship Virtues, 2(1), 251–262. doi.org/10.37640/jcv.v2i1.1184

Kurniawan, D. (2009). Kemiskinan Di Indonesia dan Solusinya.

Majidah, A. M., & Paramartha, D. Y. (2021). Analisis Dampak dan Siklus Pertumbuhan Lapangan Usaha: Kajian Lapangan Usaha pada Masa Pandemi COVID-19. Seminar Nasional Official Statistics, 2021(1), 409–418. doi.org/10.34123/semnasoffstat.v2021i1.897

Nafisah, Q., & Chandra, N. E. (2017). Analisis Cluster Average Linkage Berdasarkan Faktor-Faktor Kemiskinan di Provinsi Jawa Timur. Zeta – Math Journal, 3(2), 31–36. doi.org/10.31102/zeta.2017.3.2.31-36

Nazipawati. (2007). Aplikasi Model Static dan Dynamic Location Quotients dan Shift-Share Dalam Perencanaan Ekonomi Regional (Studi Kasus Kabupaten Ogan Komering Ulu Propinsi Sumatera Selatan). Jurnal Pembangunan Ekonomi Wilayah, 2(2), 82–86. doi.org/10.20884/1.erjpe.2007.2.2.393

Ningrat, D. R., Maruddani, D. A. I., & Wuryandari, T. (2016). Analisis Cluster Dengan Algoritma K-Means dan Fuzzy C-Means Clustering Untuk Pengelompokkan Data Obligasi Korporasi. Jurnal Gaussian, 5(4), 641–650. doi.org/10.14710/j.gauss.v5i4.14721

Prihastuti, D. (2015). Analisis Generalized Two Stages Ridge Regression (GTSRR) untuk Mengatasi Multikolinearitas dan Autokorelasi berserta Aplikasinya. Universitas Negeri Yogyakarta.

Sihombing, F. N. (2018). Identifikasi Pangan Unggulan di Kota Medan : Location Quotient dan Dynamic Location Quotient. Jurnal Pembangunan Perkotaan, 6(2), 91–94. ejpp.balitbang.pemkomedan.go.id/index.php/JPP/article/view/45%0A

Sihombing, R. E., Rachmatin, D., & Dahlan, J. A. (2019). Program Aplikasi Bahasa R Untuk Pengelompokkan Objek Menggunakan Metode K-Medoids Clustering. Jurnal EurekaMatika, 7(1), 58–79. doi.org/10.17509/jem.v7i1.17888

Simamora, P. B., & Kifli, F. W. M. (2017). Analisis DLQ (Dynamic Location Quotient) Terhadap Sektor Ekonomi Di Propinsi Sumatera Utara. Jurnal Masepi, 2(1).

Sugiyono, P. D. (2006). Statistik untuk Penelitian. CV ALFABETA.

Widodo, E., Sari, N. N., Hidayati, I., Yubinas, F., Yuniarti, M., & Novyantika, R. D. (2018). Analisis Cluster Penderita Disabilitas Mental di Provinsi Daerah Istimewa Yogyakarta Tahun 2016. Prosiding Konferensi Nasional Penelitian Matematika Dan Pembelajarannya (KNPMP) III 2018, 2502–6526, 577–586. http://hdl.handle.net/11617/10140

Downloads

Published

2022-09-24

How to Cite

Narendra, I. S., & Muhajir, M. (2022). ANALYSIS OF DYNAMIC TIME WARPING IN THE DEVELOPMENT OF GROSS REGIONAL DOMESTIC PRODUCT YOGYAKARTA. Jurnal Riset Informatika, 4(4), 397–406. https://doi.org/10.34288/jri.v4i4.175