IMPLEMENTATION OF DATA MINING TO DETERMINE THE ASSOCIATION BETWEEN BODY CATEGORY FACTORS BASED ON BODY MASS INDEX

  • Desti Fitriati (1*) Universitas Pancasila
  • Bima Putra Amiga (2) Universitas Pancasila

  • (*) Corresponding Author

Keywords: Algoritma FP-Growth;, Data Mining;, Asosiasi;, Indeks Massa Tubuh;, Body Mass Index

Abstract

The development of the increasing flow of globalization in the field of science and technology as well as increased income has resulted in reduced physical activity of the community which results in diverging diet and physical activity which makes a person not pay attention to his body shape. This method of calculating the Body Mass Index can be used to determine a person's body shape. There are several factors that can affect the value of the Body Mass Index, including individual factors, consumption patterns, and lack of physical activity which leads to a sedentary lifestyle. These factors are made into 69 itemset which will be used as the basis for questions in the questionnaire to collect a dataset which will later be processed using the FP Growth algorithm and looking for association rules that have the highest support x confidence value. From the 490 calculation data, the results are categorized into 10, each of which is Men with a Very Thin BMI with the highest support x confidence value of 39.56%, Men with a Thin BMI of 55.90%, Men with a Normal BMI of 70%, men with a fat BMI of 49.23%, men with an obese BMI of 41.34%, women with a very thin BMI of 41.37%, women with a thin BMI of 37.21%, Normal BMI is 68.83%, women with obese BMI are 41.65%, and women with obese BMI are 42.91%.

Downloads

Download data is not yet available.

References

Anggraeni, S., Iha, M. A., Erawati, W., & Khairunnas, S. (2019). Analysis of Sales by Using Apriori and FP-Growth at PT. Panca Putra Solusindo. Riset Dan E-Jurnal Manajemen Informatika Komputer, 3(2), 41–46. Retrieved from https://jurnal.polgan.ac.id/index.php/remik/article/view/10107

Ariati, N. N., Gumala, N. M. Y., & Nursanyoto, H. (2017). HUBUNGAN KONSUMSI MAKRONUTRIEN DENGAN RESIKO PENUAAN DINI PADA LANSIA YANG MENGIKUTI SENAM LANSIA DI POSYANDU KABUPATEN GANYAR. Jurnal Sangkareang Mataram, 3(3), 34–37. Retrieved from http://untb.ac.id/wp-content/uploads/2017/06/8.HUBUNGAN-KONSUMSI-MAKRONUTRIEN-DENGAN-RESIKO-PENUAAN-DINI-PADA-LANSIA-Nengah-Ariati.pdf

Ayuni, A., Suharso, P., & Sukidin, S. (2019). PERUBAHAN GAYA HIDUP MAHASISWI UNIVERSITAS ABDURACHMAN SALEH KOTA SITUBONDO (STUDI KASUS: PERILAKU KONSUMTIF MAHASISWI FAKULTAS EKONOMI JURUSAN MANAJEMEN ANGKATAN 2014 DALAM MENGGUNAKAN KOSMETIK BRANDED). JURNAL PENDIDIKAN EKONOMI: Jurnal Ilmiah Ilmu Pendidikan, Ilmu Ekonomi Dan Ilmu Sosial, 13(1), 58–65. https://doi.org/10.19184/jpe.v13i1.10421

Dewi, A., & Mahmudiono, T. (2013). Hubungan Pola Makan, Aktivitas Fisik, Sikap, dan Pengetahuan Tentang Obesitas dengan Status Gizi Pegawai Negeri Sipil di Kantor Dinas Kesehatan Provinsi Jawa Timur. Jurnal Media Gizi Indonesia, 9(1), 42–48.

Hasanah, D. N., & Febrianti, M. (2012). KEBIASAAN MAKAN MENJADI SALAH SATU PENYEBAB KEKURANGAN ENERGI KRONIS (KEK) PADA IBU HAMIL DI POLI KEBIDANAN RSI&A LESTARI CIRENDEU TANGERANG SELATAN. Jurnal Kesehatan Reproduksi, 3(3), 91–104. Retrieved from https://media.neliti.com/media/publications/106703-ID-kebiasaan-makan-menjadi-salah-satu-penye.pdf

Jannah, M., & Utami, T. N. (2018). Faktor yang Memengaruhi Terjadinya Obesitas Pada Anak Sekolah di SDN 1 Sigli Kabupaten Pidie. Jurnal Kesehatan Global, 1(3), 110–118. https://doi.org/10.33085/jkg.v1i3.3928

Kusuma, B. J., & Pinandita, T. (2011). Rancang Bangun Aplikasi Mobile Perhitungan Indeks Massa Tubuh dan Berat Badan Ideal. Juita, I(4), 157–168. Retrieved from https://www.neliti.com/publications/92701/rancang-bangun-aplikasi-mobile-perhitungan-indeks-massa-tubuh-dan-berat-badan-id

Lestari, Y. D. (2015). Penerapan Data Mining Menggunakan Algoritma Fp-Tree Dan Fp-Growth Pada Data Transaksi Penjualan Obat. Seminar Nasional Teknologi Informasi Dan Komunikasi (SNASTIKOM 2015), 60–65. https://doi.org/10.31227/osf.io/t93uv

Mahdali, I. (2019). NUTRITIONAL EDUCATION EFFECTS ON KNOWLEDGE CHANGE, ATTITUDE AND CHANGES IN CONSUMPTION PATTERNS AND OBESITY SEDENTARY ADOLESCENT ACTIVITIES. Universitas Negeri Gorontalo, 1(1), 33–46. Retrieved from http://ejurnal.ung.ac.id/index.php/jjsc/article/view/2011

Muliono, R. (2017). Analisis Efisiensi Algoritma Data Mining. Semantika (Seminar Nasional Teknik Informatika), 1(1), 978–602. Retrieved from http://fimi.ua.ac.be/data/.[12]

Nahdiyah, I. (2015). Hubungan antara body image dengan kepuasan hidup pada remaja yang mengalami obesitas di Komunitas KAGUMI (Ikatan Wanita Gemuk Indonesia) (Universitas Islam Negeri Maulana Malik Ibrahim Malang). Universitas Islam Negeri Maulana Malik Ibrahim Malang. Retrieved from http://etheses.uin-malang.ac.id/1531/

Putra, Y. W., & Solichathi Rizqi, A. (2018). INDEX MASSA TUBUH (IMT) MEMPENGARUHI AKTIVITAS REMAJA PUTRI SMP NEGERI 1 SUMBERLAWANG. Gaster | Jurnal Ilmu Kesehatan, 16(1), 105–115. https://doi.org/10.30787/gaster.v16i1.233

Rahmayanti, D. (2016). Pola Makan Anak Dengan Status Gizi Anak Usia 6-8 Tahun Di SD Wilayah Kelurahan Cempaka. Dunia Keperawatan, 4(1), 8–13. Retrieved from https://ppjp.ulm.ac.id/journal/index.php/JDK/article/view/2504/

Suryadinata, R. V., & Sukarno, D. A. (2019). PENGARUH AKTIVITAS FISIK TERHADAP RISIKO OBESITAS PADA USIA DEWASA. In The Indonesian Journal of Public Health (Vol. 14). https://doi.org/10.20473/IJPH.V14I1.2019.104-114

Syahputra, D., & Muhathir, M. (2018). Perhitungan Metode Fuzzy Sugeno Dan Antropometri Dalam Memprediksi Status Gizi Indeks Massa Tubuh. JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, 2(1), 16. https://doi.org/10.31289/jite.v2i1.1676

Published
2020-09-15
How to Cite
Fitriati, D., & Amiga, B. (2020). IMPLEMENTATION OF DATA MINING TO DETERMINE THE ASSOCIATION BETWEEN BODY CATEGORY FACTORS BASED ON BODY MASS INDEX. Jurnal Riset Informatika, 2(4), 233-240. https://doi.org/10.34288/jri.v2i4.159
Article Metrics

Abstract viewed = 97 times
PDF downloaded = 60 times