CLASSIFICATION OF BURNED PEATLAND USING PROBABILISTIC NEURAL NETWORK ALGORITHM BASED ON HIGH TEMPORAL DATA

Authors

  • Neneng Rachmalia Feta Bank Rakyat Indonesia Institute of Technology and Business
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v4i2.151

Keywords:

Peatland, Classification, PNN, DBScan, Landsat 7 ETM imagery

Abstract

Land fires in Indonesia occur on dry land as well as on peatlands. Fires on peatlands are more dangerous and more challenging to tackle than fires on non-peatlands, and the consequences of peatland fires that occur are very detrimental to communities. One of the solutions offered in assessing forest and peatland fires is remote sensing technology. Satellite images obtained from remote sensing technology are usually classified for further analysis. The main objective of this study is to develop a classification model using the Probabilistic Neural Network (PNN) to classify areas in peatlands before, during, and after burning on Landsat 7 ETM+ satellite imagery. Furthermore, the model is used to obtain the trajectory pattern of the burned area using the DBScan algorithm. The research area is Ogan Komering Ilir Regency; South Sumatra Province Landsat 7 ETM+ images were taken from January 2015 – December 2015. 

 

Downloads

Download data is not yet available.

References

Adinugroho, wahyu catur, Suryadiputra, I. N. N., Saharjo, B. H., & Siboro, L. (2005). Manual for the control of fire in peatlands and peatland forest. (B. H. Saharjo (ed.); 1st ed.). Wetlands International – Indonesia Programme.

Antropov, O., Rauste, Y., Astola, H., Praks, J., Hame, T., & Hallikainen, M. T. (2014). Land cover and soil type mapping from spaceborne polsar data at l-band with probabilistic neural network. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2013.2287712

Boulila, W., Farah, I. R., Ettabaa, K. S., Solaiman, B., & Ghézala, H. Ben. (2010). Spatio-temporal modeling for knowledge discovery in satellite image databases. CORIA 2010: Actes de La COnference En Recherche d’Information et Applications - Proceedings of the Conference on Information Retrieval and Applications.

Chen, X., Liu, D., Wang, X., Chen, Y., & Cheng, S. (2021). Improved DBSCAN Radar Signal Sorting Algorithm Based on Rough Set. 2021 2nd International Conference on Big Data and Informatization Education (ICBDIE), 398–401. https://doi.org/10.1109/ICBDIE52740.2021.00096

Deng, D. (2020). DBSCAN Clustering Algorithm Based on Density. 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), 949–953. https://doi.org/10.1109/IFEEA51475.2020.00199

Ester M, Kriegel H P, S. J. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of Second International Conference on Knowledge Discovery and Data Mining. Kdd.

Greenpeace. (2014). Sumatra: will be covered with smoke. Pers Greenpeace, Tech. Rep. http://www.greenpeace.org/seasia/id/PageFiles/616273/Kabut Asap Sumatera.pdf

Guan, S., Fang, Q., & Guan, T. (2021). Application of a Novel PNN Evaluation Algorithm to a Greenhouse Monitoring System. IEEE Transactions on Instrumentation and Measurement, 70, 1–12. https://doi.org/10.1109/TIM.2021.3079558

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and TechniquesHan, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. San Francisco, CA, itd: Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-381479-1.00001-0. In San Francisco, CA, itd: Morgan Kaufmann.

Mustakim, Rahmi, E., Mundzir, M. R., Rizaldi, S. T., Okfalisa, & Maita, I. (2021). Comparison of DBSCAN and PCA-DBSCAN Algorithm for Grouping Earthquake Area. 2021 International Congress of Advanced Technology and Engineering (ICOTEN), 1–5. https://doi.org/10.1109/ICOTEN52080.2021.9493497

Ohadi, N., Kamandi, A., Shabankhah, M., Fatemi, S. M., Hosseini, S. M., & Mahmoudi, A. (2020). SW-DBSCAN: A Grid-based DBSCAN Algorithm for Large Datasets. 2020 6th International Conference on Web Research (ICWR), 139–145. https://doi.org/10.1109/ICWR49608.2020.9122313

R. D. (2015). Hotspot in Oki occurred 234 points. Internet, Tech. Rep. http://daerah.sindonews.com/read/1044643/190/hotspotdi-oki-tercatat-234-titik-1442252742

Sa’adah, S., & Pratiwi, M. S. (2020). Classification of Customer Actions on Digital Money Transactions on PaySim Mobile Money Simulator using Probabilistic Neural Network (PNN) Algorithm. 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 677–681. https://doi.org/10.1109/ISRITI51436.2020.9315344

Sizer, N., Leach, A., Minnemeyer, S., Higgins, M., Stolle, F., Anderson, J., & Lawalata, J. (2014). Preventing forest fires in Indonesia: focus on Riau Province, peatland, and illegal burning. World Resources Institute.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks. https://doi.org/10.1016/0893-6080(90)90049-Q

Suwarsono, Rokhmatuloh, & Waryono, T. (2013). Pengembangan Model Identifikasi Daerah Bekas Kebakaran Hutan Dan Lahan ( Burned Area ) Menggunakan Citra Modis Di Kalimantan. Jurnal Penginderaan Jauh.

W. W. International. (2015). "Peatland,”. Internet, Tech. Rep. http://www.wetlands.org/Whatarewetlands/Peatlands/tabid/2737/Default.aspx

WWF. (2015). World wide fund for nature 2015 could the decline in hotspots is reached? Internet, Tech. Rep. http://www.wwf.or.id/tentangwwf/upayakami/iklimdan_nergi/solusikami/

Downloads

Published

2022-03-24

How to Cite

Feta, N. R. (2022). CLASSIFICATION OF BURNED PEATLAND USING PROBABILISTIC NEURAL NETWORK ALGORITHM BASED ON HIGH TEMPORAL DATA. Jurnal Riset Informatika, 4(2), 141–148. https://doi.org/10.34288/jri.v4i2.151

Issue

Section

Articles