SENTIMENT ANALYSIS OF REKSADANA ON BIBIT APPLICATIONS USING THE NAÏVE BAYES METHOD AND K-NEAREST NEIGHBOR (KNN)

Authors

  • Alisa Fitriyani Universitas Nasional
  • Agung Triayudi Universitas Nasional
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v4i2.149

Keywords:

Reksadana, YouTube, Naive Bayes classifier (NBC), K-nearest neighbor(KNN)

Abstract

The lack of public interest in the capital market has made the top brass of capital market companies compete with each other to provide services to provide convenience for customers in the various services available and provide convenience in accessing financial information. The emergence of several startup companies that provide reksadana investment products for investors, namely PT Bibit Reksadana Grows Together, which created a reksadana application, namely Bibit Reksadana with more than one million users based on data downloaded on the play store by PT Bibit Grow Bersama which acts as a Reksadana Selling Agent (APERD) and sells 134 reksadana products. So to provide information to the public, it is necessary to have a sentiment analysis on how the opinions of users of the reksadana bibit application use the K-nearest neighbor (KNN) and Naïve Bayes methods, with the results of scraping youtube as much as 33,292 and scraping reviews as much as 30,708 reviews, then the text processing stage is carried out, and labeling using the text blob library, with an accuracy rate of 99%, 99%, 99% accuracy on youtube data classification and review data with the K-Nearest Neighbor method, 99%, and 99%, 98% Naïve Bayes, it can be concluded that neutral sentiment is more than positive sentiment. , and more positive sentiment than negative sentiment.

 

Downloads

Download data is not yet available.

References

Amrullah, A. Z., Sofyan Anas, A., & Hidayat, M. A. J. (2020). Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square. Jurnal, 2(1), 40–44. https://doi.org/10.30812/bite.v2i1.804

Balya. (2019). Analisis Sentimen Pengguna Youtube Di Indonesia Pada Review Smartphone Menggunakan Naïve Bayes.

Diniyati, D., Triayudi, A., & Solehati, I. D. (2021). Analisa Interaksi Pengguna Media Sosial Perusahaan Sekuritas di Indonesia Saat Covid-19 menggunakan Social Network Analysis ( Studi Kasus : Indopremier dan Bursa Efek Indonesia ). (January). https://doi.org/10.35870/jtik.v5i1.166

Fairuz, F. (2017). Klasifikasi Review Software Pada Google Play Menggunakan Pendekatan Analisis Sentimen (Universitas Gajah Mada). Universitas Gajah Mada. Retrieved from http://etd.repository.ugm.ac.id/penelitian/detail/112855

Firdaus, M. R., Rizki, F. M., Gaus, F. M., & Susanto, I. K. (2020). Analisis Sentimen Dan Topic Modelling Dalam Aplikasi Ruangguru. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 4(1), 66. https://doi.org/10.30645/j-sakti.v4i1.188

Gunawan, B., Pratiwi, H. S., & Pratama, E. E. (2018). Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 4(2), 118. https://doi.org/10.26418/jp.v4i2.27526

Ikoro, V., Sharmina, M., Malik, K., & Batista-navarro, R. (2020). 2020 7th International Conference on Social Network Analysis, Management and Security, SNAMS 2020. 2020 7th International Conference on Social Network Analysis, Management and Security, SNAMS 2020, 95–98.

Indah Ramadhani, N. (2021). Pengaruh Pengetahuan, Manfaat Dan Risiko Investasi Terhadapminat Investasi Padamahasiswafakultas Ekonomidan Bisnisuniversitassumatera Utara.

Muhammad, A. N. (2019). Analisis Sentimen Positif Dan Negatif Komentar Video Youtube Menggunakan Metode Naïve Bayes - Support Vector Machine (Nbsvm) Classifier. Skripsi, 17.

Olabenjo, B. (2016). Applying Naive Bayes Classification to Google Play Apps Categorization. Retrieved from arXiv preprint website: https://arxiv.org/abs/1608.08574

Park, C. W., & Seo, D. R. (2018). Sentiment analysis of Twitter corpus related to artificial intelligence assistants. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 495–498. https://doi.org/10.1109/IEA.2018.8387151

Rizal, S. (2021). Fenomena Penggunaan Platform Digital Reksa Dana Online dalam Peningkatan Jumlah Investor Pasar Modal Indonesia. Humanis: Humanities, Management and Science Proceedings, 1(2), 851–861.

S, F. F., Si, M. N. S., Twitter, A., Giovani, A. P., Haryanti, T., Kurniawati, L., … Indah Ramadhani, N. (2021). Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. Proceeding SNTEI, 1(2), 113. https://doi.org/10.1088/1742-6596/1444/1/012034

Sandoval-Almazan, R., & Valle-Cruz, D. (2018). Facebook impact and sentiment analysis on political campaigns. ACM International Conference Proceeding Series. https://doi.org/10.1145/3209281.3209328

Wisnu, H., Afif, M., & Ruldevyani, Y. (2020). Sentiment analysis on customer satisfaction of digital payment in Indonesia: A comparative study using KNN and Naïve Bayes. Journal of Physics: Conference Series, 1444(1). https://doi.org/10.1088/1742-6596/1444/1/012034

Downloads

Published

2022-03-24

How to Cite

Fitriyani, A., & Triayudi, A. (2022). SENTIMENT ANALYSIS OF REKSADANA ON BIBIT APPLICATIONS USING THE NAÏVE BAYES METHOD AND K-NEAREST NEIGHBOR (KNN). Jurnal Riset Informatika, 4(2), 127–134. https://doi.org/10.34288/jri.v4i2.149

Issue

Section

Articles