SENTIMENT ANALYSIS OF COVID-19 VACCINATION POSTS ON FACEBOOK IN INDONESIA WITH CROWDTANGLE
DOI:
https://doi.org/10.34288/jri.v3i4.101Keywords:
vaccine, COVID-19, sentiment analysis, government, news portal, Facebook, CrowdTangleAbstract
COVID-19 was declared a pandemic by the World Health Organization (WHO) in early 2020. The Indonesian government has taken steps to stop COVID-19 from spreading, one of which is vaccination. However, not everyone thinks vaccination is a good idea. Like in other countries, Indonesian people responded in different ways to COVID-19 vaccination posts on social media, be it from government officials or news portals. Public responses can be used to help the government make a better vaccination strategy to end the pandemic in Indonesia. Using the lexicon method in determining the sentiment in COVID-19 vaccination posts on Facebook, this research found that unlike news portals that tended to post a more balanced content (36% positive, 20% negative, and 44% neutral out of 23,623 posts, min score = -19, max score = 24, mean = 0.25, SD = 1.43), government accounts posted much more positive content, both in quality (min score = -15, max score = 40, mean score = 4.16, SD = 6.76 ) and quantity (69% positive) than they did the neutral (15%) and the negative content (16%) out of 723 posts. Subsequent analysis with Two-Way ANOVA tests discovered that COVID-19 vaccination posts by the news portals elicited more varied reactions from the public than government accounts that tended to elicit mostly positive reactions. Also, both the content sentiment of COVID-19 vaccination posts in Indonesia and the account types making those posts, as well as their interaction terms do have an impact on how the public responds to them.
Downloads
References
Afif, A. S., & Pratama, A. R. (2021). Analisis Sentimen Kebijakan Pendidikan Di Masa Pandemi COVID-19 dengan CrowdTangle di Instagram. Automata, 2(2).
Apriliant, A. (2019). Analisis Sentimen Pasca Pemilihan Umum (Pemilu) Indonesia Tahun 2019 Melalui Platform Twitter Dengan Naive Bayes. ISSN 2502-3632 (Online) ISSN 2356-0304 (Paper) Jurnal Online Internasional & Nasional Vol. 7 No.1, Januari – Juni 2019 Universitas 17 Agustus 1945 Jakarta, 53(9), 1689–1699.
Berriche, M., & Altay, S. (2020). Internet users engage more with phatic posts than with health misinformation on Facebook. Palgrave Communications, 6(1), 1–9. https://doi.org/10.1057/s41599-020-0452-1
Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134. https://doi.org/10.1016/j.knosys.2021.107134
Facebook. (2020). Can I Get a Hug? The Story of Facebook’s Care Reaction.
Larsson, A. O. (2020). Right-wingers on the rise online: Insights from the 2018 Swedish elections. New Media and Society, 22(12), 2108–2127. https://doi.org/10.1177/1461444819887700
Lee, Y. I., Phua, J., & Wu, T. Y. (2020). Marketing a health Brand on Facebook: Effects of reaction icons and user comments on brand attitude, trust, purchase intention, and eWOM intention. Health Marketing Quarterly, 37(2), 138–154. https://doi.org/10.1080/07359683.2020.1754049
Lunando, E., & Purwarianti, A. (2013). Indonesian social media sentiment analysis with sarcasm detection. 2013 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2013, 195–198. https://doi.org/10.1109/ICACSIS.2013.6761575
Peraturan Presiden. (2021). Peraturan Presiden Republik Indonesia Nomor 14 tahun 2021 tentang Perubahan atas Peraturan Presiden Nomor 99 Tahun 2020 tentang Pengadaan Vaksin dan Pelaksanaan Vaksinasi dalam Rangka Penanggulangan Pandemi Corona Virus Desease 2019 (Covid-19). 2019(039471), 13 pages.
Pritasari, N. F., Parhusip, H. A., & Susanto, B. (2013). ANOVA untuk Analisis Rata-Rata Respon Mahasiswa Kelas. Prosiding SNMPM Universitas Sebelas Maret 2013, 2(August 2015), 233–315.
Putra, I. G. S. A., & Mustika, M. D. S. (2014). Analisis Perbedaan Rata-Rata Pendapatan Pedagang Acung Pinggir Pantai di Kecamatan Kuta Kabupaten Badung. E-Jurnal EP Unud, 3(7), 282–289.
Rachman, F. F., & Pramana, S. (2020). Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter. Health Information Management Journal ISSN, 8(2), 2655–9129.
Rakhmawati, N., Aditama, M., Pratama, R., & Wiwaha, K. (2020). Analisis Klasifikasi Sentimen Pengguna Media Sosial Twitter Terhadap Pengadaan Vaksin COVID-19. JIEET (Journal of Information Engineering and Educational Technology), 4(2), 90–92.
Schuchat, A. (2011). Human Vaccines and Their Importance to Public Health. Procedia in Vaccinology, 5, 120–126. https://doi.org/10.1016/j.provac.2011.10.008
Setyobudi, W., Alwi, A., & Astuti, I. P. (2018). Sentimen Analisis Twitter Terhadap Penyelenggaraan Gojek Traveloka Liga 1 Indonesia. Komputek, 2(1), 56. https://doi.org/10.24269/jkt.v2i1.68
Spottswood, E., & Wohn, D. Y. (2019). Beyond the “Like”: How People Respond to Negative Posts on Facebook. Journal of Broadcasting and Electronic Media, 63(2), 250–267. https://doi.org/10.1080/08838151.2019.1622936
Widangsa, A. R., & Pratama, A. R. (2021). Analisis Sentimen Kebijakan Pendidikan Di Masa Pandemi COVID-19 dengan CrowdTangle di Facebook. Automata, 2(2).
Yamali, F. R., & Putri, R. N. (2020). Dampak Covid-19 Terhadap Ekonomi Indonesia. Ekonomis: Journal of Economics and Business, 4(2), 384. https://doi.org/10.33087/ekonomis.v4i2.179
: , , , , ,
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Adita Rianto, Ahmad R. Pratama

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.