A STUDY OF SIRIP DESA AT CITERAS, LEBAK, BANTEN AN ARCHIEVAL INFORMATION SYSTEM

Ria Astriratma 1*), Helena Nurramdhani Irmanda 2
Information System
Universitas Pembangunan Veteran Jakarta
https://www.upnvj.ac.id/
astiratma@unpvj.ac.id 1, helenairmanda@upnvj.ac.id 2
(*) Corresponding Author

Abstrak

Kata kunci: Sistem Informasi, Arsip, Kependudukan, Waterfall.

Abstract
This study aims to create an archiving information system that can be used to store data held by government officials in Citeras Village as needed. The research stage was preceded by collecting data archives/files contained in the Citeras Village. Then the data is processed to be processed in the system. The data obtained is modeled according to system requirements. Then implemented into a web-based system. The output of this research is the availability of an archiving information system as a data storage tool in accordance with the needs of the web-based Citeras Village government device using the SDLC (System Development Life Cycle) Waterfall method. Database design using MySQL and the programming language used is PHP. The result of this research is the availability of a web-based archiving information system for population data in Citeras Village which can then be used by Citeras Village officials, Rangkasbitung District, Lebak Regency, Banten.

Keywords: Information System, Archives, Population, Waterfall.

INTRODUCTION
Citeras is a village located in Rangkasbitung, Lebak, Banten. This village is headed by a Local Mayor who is a Civil Servant, while the other employees are honorary staff. To accomplish the public service, this village require an information system which can be used as an archive storage. The archives includes the making of application letters by residents, incoming and outgoing letters which received by the village government. (Permata & Rahmah, 2020). Data processing that is currently implemented on Citeras is still recorded from correspondence sheets. So that in delivering service and information to the public is still done manually. This can be accommodated by building a web-based information system in the form of archival storage to support better service to the community. (Listiyono, 2016). Data collection is done by the method of observation and interviews with the company to get the necessary data. (Silalahi, Ishak, & Marcioello, 2020).

Based on the Law of the Republic of Indonesia Number 24, 2013, Concerning Civil Administration. Civil administration is a series of structuring and controlling activities in the issuance of documents and civilization data through civil registration and recording, management of civil information administration and utilization of the data for public service and development of other sectors. (Baharudin, 2013)

Information technology is the development in information systems by combining
computer technology with telecommunications. (Sukamto & Shalahuddin, 2018). The use of information systems can help the performance of village government become better and easier. A support from the information technology could make a development of information system more reliable. Information is one of the important resources in modern management era. The arrangement of information that carried out regulatory, clearly, appropriately and quickly and can be presented in applications and reports is certainly very helpful for the operational activities of the village government. (Paryanta, Sutariyani, & Desi, 2017). The agencies need to aware with this technological development and continue to improve their ability in managing information and data. (Amsyah, 2003). A government agency also needs an information system which can support their needs in creating work efficiency and effectiveness in managing civil administration data.

Many researches related to information systems and archival storage management have been carried out. One of them is a research (Sudarsono, 2013) which shows that Gayungan Subdistrict Office of Surabaya still have a poor category in implementing archival storage management. This discovered by their way of storing archives, which only done by using one or two boxes. The next research was entitled at archiving information system incoming and outgoing mail at the Semarang Police (Oky, 2013) which produces an application that can manage incoming and outgoing mail using Visual Basic 6.0 programming according to the specified flow and solved the problems. The other research (Simangunsong, 2018) is about Web-Based Document Archiving Information System. This research reveals how to design, implement, maintain and make a security system so that able to avoid system damage. The application was developed with PHP and MySQL, with the aim to accelerate the process of archiving and storing the document in a fast, precise and detailed time. This research was done in Public Housing Regional – I, Medan.

A Software Development Lifecycle and others practices are to be used for software development projects involving optimized for implementation under a Waterfall model. (Santos, 2016). Helling etc have a research about Rumah Kost Hj. Gaby, for software development uses the Rapid Application Development Model (RAD). The results are expected to assist boarding owners in promoting their boarding houses and also provide a more effective way of conducting transactions related to the boarding houses. (Helling, Hasanudin, Wahyudi, & Ajusta, 2020). Permata and Rahmah have a study to describe the dynamic archive storage procedures in the archives field of the Padang Pariaman District Archives and Library. The results showed that dynamic archive storage was active in the field of archives in the office of Archives and District Library Padang Pariaman uses Norms, Standards, Procedures, and Criteria (NSPK) in the Implementation of Archives Filing as a guideline in the filing of archives in the Padang Pariaman District Archives and Library Service. (Permata & Rahmah, 2020).

Thesing had a study for develops a decision model of a procedural model for project management. This study has two principal contributions. Each procedural model is particularly well suited for certain project types with defined criteria. If these project criteria are not met or are met only to a limited extent, the approach is likely to fail. (TheoThesinga, Feldmanna, & Burchardt, 2021). Lee etc., have a research to propose a framework for optimizing software development and V&V qualities by incorporating and estimating various risk-cost factors related to SDLC processes. It showed important SDLC phases where the risk-cost factors can be minimized by achieving high software quality. (Lee et al, 2020).

From the explanation above, it can be concluded that the problem in Citeras Government can be solved by developing the web-based archiving information system. The studied archiving information system is expected to help the storage system of archives and data needed by Citeras Government.

RESEARCH METHODS

In this research, the archiving information system was developed using a software development analysis SDLC (System Development Life Cycle), which is a logical process used by system analysts to describe an information system, including requirement, validation, training and ownership (Sudarsono, 2013). Development of engineering system includes the following steps (Sutabri, 2005):

1. Planning. To produce a good quality software, it is necessary to do careful planning by conducting a feasibility studies, which includes: economic, operational, and technical.
2. Analyze. The purpose of system analysis is to determine the problem to improve the system. With this system analysis, it is expected that the problems will be resolved.
3. System Design. Describes screen layout, business rules, process diagrams and other documentation. The results of this step will
describe a new system as a collection of modules or subsystems.
4. Implementation (Build and Code). In this step the implementation of the design system. The result of this step will produce a software.
5. Testing. This is to ensure the reliability of the software.

Research Stages
This research flow consists of five stages which can be seen in Figure 1.

The explanation of the research stages above is as follows:
1) Literature Review
 This stage means to study journals, research results and books related to information systems, archiving and software development.
2) Data Collection
 Data collection is a stage that is done to collect data and information needed for research materials. At this stage, literature studies on science needed in research are carried out. This stage also needs the analysis to prepare all the requirement of research, including data sample.
3) System Implementation
 Implementing SDLC method as the development of archival information system, using MySQL database and PHP as a programming language.
4) Analysis and Test Results
 In this stage, various analysis and its design are carried out. Analysis and testing process is based on existing criteria to produce conclusions.
5) Conclusions and Recommendations
 This stage aims to documenting and make a conclusion from the entire research, and also to give a recommendation for the next research.

RESULTS AND DISCUSSION
The archiving system of village government is an information system which able to store archive and data needed by the Citeras government officers. This system expected to ease the officers to serve the Citeras community related to civil administration. This system is called SIRIP Desa and has the following capabilities:
1. Users of SIRIP Desa is the officers of Citeras government that responsible in civil administration.
2. The application to manage the population data, which able to create, read, update and delete data as needed.
3. The application to manage the population’s birth and death data, consisting of two subsystems (birth and death data). Users able to create, read, update and delete data of birth and death as needed.
4. The application to manage application letters, consisting of seven subsystems, which are for create 1) the affidavit of unmarried, 2) the affidavit of legal capacity to marry, 3) the application letter for Residential Identity Card, 4) the application letter for Family Card, 5) the affidavit of poor resident, 6) the affidavit of temporary domicile, and 7) the application letter for population data change. Users able to create, read, update, delete, and print the previously mentioned item as needed.

System Design Analysis
The system design analysis is using SDLC with the implementation of Waterfall model, which provides the ordered software lifeline approach starting from system requirement analysis, system design development, program code implementation, testing and maintenance. (Simangunsong, 2018). SDLC models give a theoretical guide line regarding development of the software which is very important for developing the software in a systematic manner such that it will be delivered within the time deadline and should also have proper quality like waterfall model. (Malik & Nigam, 2017). Figure 2 shows about Waterfall model illustration.
menu. This application has three main menus, namely Population Data menu, Birth and Death Data menu and Application Letter menu, with the system requirement as follows:

a) Population Data menu consists of brief population data information namely National Identity Number, Full Name and Family Card Registration Number. This menu is furnished by features to create new data, read details of population data, update population data, delete population data and also a feature to search population data.

b) Birth and Death Data menu consists of two subsystems, which are Birth Data menu and Death Data menu. Birth Data menu consists of brief data information namely ID, Family Card Registration Number, Child Name and Child’s National Identity Number. This menu is furnished by features to create new birth data, read details of birth data, update birth data, delete birth data, print birth data and also a feature to search birth data. Death Data menu consists of brief data information namely ID, Affidavit of Death Registration Number, Name of the Death and Date of Death. This menu is furnished by features to create new death data, read details of death data, update death data, delete death data, print death data and also a feature to search death data.

c) Application Letter Menu consists of seven subsystems, which are 1) Affidavit of Umarried Data, 2) Affidavit of Legal Capacity to Marry Data, 3) Application Letter for Residential Identity Card Data, 4) Application Letter for Family Card, 5) Affidavit of Poor Resident, 6) Affidavit of Temporary Domicile, and 7) Application Letter for Population Data Change. Each subsystem has different information based on the requirement. Details can be read in User Interface Design Subsection.

System Design

Stage of a user interface design development, as an initial overview for system display as well as the functionality of each user interface design which will be discussed in User Interface Design Subsection.

User Interface Design

User interface design is a display as communication tools between user and system. Communication that occurs can be either input from the user or output from the system.

Main Page Design

The main page displays menus required by users. The display at the first time opened shown in Figure 3 and when the menu on the left side of the display clicked, a subsystem menu will appear as shown in Figure 4.

Figure 3. A display at the first time system opened

Figure 4. Display page when the subsystem menu appeared

Layout of the Population Data Menu Page Interface

The layout interface of Population Data Menu is used to process data population of Citeras. This page contains several buttons to add new data, show details of population data, change population data and delete population data. In this display, there is also search menu located to the top-right of the page. This menu can be used when user wants to quickly find the particular data. The layout is shown in Figure 5.

Figure 5. Layout interface of Population Data page

Layout interface of search result page

In this layout, user simply input the identity of the particular resident in search menu, as shown in Figure 6. This also applied to all subsystems that have search function.
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

In this layout, users able to fill data as needed. This is shown in Figure 9. This page contains back button to go back to previous menu and add button to save the changed data as shown in Figure 7. This also applies to all subsystems that have a function to edit data.

In this layout, users able to fill data as needed. This is shown in Figure 9. This page contains back button to go back to previous menu and add button to save the changed data as shown in Figure 7. This also applies to all subsystems that have a function to edit data.

In this layout, users able to fill data as needed. This is shown in Figure 9. This page contains back button to go back to previous menu and add button to save the changed data as shown in Figure 7. This also applies to all subsystems that have a function to edit data.

In this layout, users able to fill data as needed. This is shown in Figure 9. This page contains back button to go back to previous menu and add button to save the changed data as shown in Figure 7. This also applies to all subsystems that have a function to edit data.

In this layout, users able to fill data as needed. This is shown in Figure 9. This page contains back button to go back to previous menu and add button to save the changed data as shown in Figure 7. This also applies to all subsystems that have a function to edit data.

In this layout, users able to fill data as needed. This is shown in Figure 9. This page contains back button to go back to previous menu and add button to save the changed data as shown in Figure 7. This also applies to all subsystems that have a function to edit data.

In this layout, users able to fill data as needed. This is shown in Figure 9. This page contains back button to go back to previous menu and add button to save the changed data as shown in Figure 7. This also applies to all subsystems that have a function to edit data.

In this layout, users able to fill data as needed. This is shown in Figure 9. This page contains back button to go back to previous menu and add button to save the changed data as shown in Figure 7. This also applies to all subsystems that have a function to edit data.

In this layout, users able to fill data as needed. This is shown in Figure 9. This page contains back button to go back to previous menu and add button to save the changed data as shown in Figure 7. This also applies to all subsystems that have a function to edit data.

In this layout, users able to fill data as needed. This is shown in Figure 9. This page contains back button to go back to previous menu and add button to save the changed data as shown in Figure 7. This also applies to all subsystems that have a function to edit data.
System Implementation
The next step after system design is the implementation, using PHP as programming language and MySQL database.

Implementation of main page
The implementation of main page at the first time the system opened is shown in Figure 15 and when menu on the left side clicked, a submenu will appear as shown in Figure 16.

Implementation of population data page interface
Implementation population data page interface is shown in Figure 17.

Implementation of search result page
Implementation of search result page is shown in Figure 18. This also applies to submenu that have search function.

Implementation of population data edit page
The implementation of population data edit page is shown in Figure 19. This also applies to all submenu that have function to edit data.
The implementation of view population data page

The implementation of view population data page is shown in Figure 20. This also applies to all submenu that have function to view population data detail.

The implementation of create new population data page

The implementation of create new population data page is shown in Figure 21.

The implementation print affidavit of unmarried page

The implementation print statement letter of unmarried page is shown in Figure 22. This also applies to all submenu that have function to print.

Testing

Testing for implementation is done using black box testing method, which is a test to the entire system functionality. The black box testing results on the part of Create New Population Data shown in the Table 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Test Scenario</th>
<th>Test Case</th>
<th>Expected Results</th>
<th>Test Result</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter NIK</td>
<td>NIK: 3102863</td>
<td>The system will accept</td>
<td>According to expectations</td>
<td>Valid</td>
</tr>
<tr>
<td>2.</td>
<td>Enter NIK</td>
<td>NIK: abnfoe</td>
<td>The system will reject and display “enter numbers, not letter or special characters”</td>
<td>According to expectations</td>
<td>Valid</td>
</tr>
<tr>
<td>3.</td>
<td>Enter Nama Lengkap</td>
<td>Nama Lengkap: Erni</td>
<td>The system will accept</td>
<td>According to expectations</td>
<td>Valid</td>
</tr>
<tr>
<td>4.</td>
<td>Choose the dropdown list of gender</td>
<td>Click dropdown list beside “Laki-Laki”</td>
<td>The system will show the other choice of gender “Perempuan”</td>
<td>According to expectations</td>
<td>Valid</td>
</tr>
<tr>
<td>5.</td>
<td>Enter No. KK</td>
<td>No. KK: 3102863</td>
<td>The system will accept</td>
<td>According to expectations</td>
<td>Valid</td>
</tr>
<tr>
<td>6.</td>
<td>Choose the dropdown list of religion</td>
<td>Click dropdown list beside “Islam”</td>
<td>The system will show the other choice of religion</td>
<td>According to expectations</td>
<td>Valid</td>
</tr>
<tr>
<td>7.</td>
<td>Choose the dropdown list of marital status</td>
<td>Click dropdown list beside “Kawin”</td>
<td>The system will show the other choice of marital status</td>
<td>According to expectations</td>
<td>Valid</td>
</tr>
<tr>
<td>8.</td>
<td>One of data is not completed except “Tanggal Kematian”</td>
<td>NIK: 3102863, Nama Lengkap: Erni, No. KK: 3102863, Perempuan, Islam, Belum Kawin</td>
<td>The system will reject and display error that data must be entered.</td>
<td>According to expectations</td>
<td>Valid</td>
</tr>
</tbody>
</table>
CONCLUSIONS AND SUGGESTIONS

The conclusion of this research is the availability of the archival information system that can be used by officers in Citeras government, Rangkasbitung, Lebak, Banten. This system information is called SIRIP Desa Citeras.

Acknowledgement

This is to acknowledge the Directorate of Research and Community Service, Directorate General of Higher Education – Ministry of National Education, and Institute of Research and Community Service (LPPM) for University of Pembangunan Nasional Veteran Jakarta that are funding this research through Junior Lecturer Research Grants.

REFERENCE

