ANALYSIS OF FACTOR AFFECTING THE INTEREST OF USING ELECTRONIC MONEY WITH TAM METHOD

Martua Hami Siregar

Computer Technology
Universitas Bina Sarana Informatika
www.bsi.ac.id
martua.mhe@bsi.ac.id

Abstract
The development of electronic money is currently growing very rapidly. This is marked by the rise of merchants who provide promos and ease of use of electronic money. To find out the perception of public interest in the use of electronic money, further research is needed using the Technology Acceptance Model (TAM) Method. TAM is a technology acceptance model that can be used to determine a person’s perceptions of attitudes and behavior when using certain technologies. The results showed that the use of electronic money can be accepted by the public as a legal means of payment. There is a positive and significant effect of Perceived Usefulness on Attitude Towards Using, There is a positive and significant influence of Perceived Usefulness on Intention to Use, There is a positive and significant influence on Attitude Towards Using on Intention to Use and There is a positive and significant influence on Intention to Use on Actual Usage.

Keywords: Electronic Money, Payment Instruments, Technology Acceptance Model.

INTRODUCTION
The development of information technology has had a major impact on the banking industry. Currently, the government and banks are actively promoting the use of electronic money campaigns. Various electronic money innovations have emerged as part of the trends and lifestyles of urban communities.

The development of electronic money will have an impact on the competition for providers of electronic money products which is increasingly competitive by delivering features that can replace payment cash (Salsabila & Giri, 2017).

The results of this study prove that the perception of benefits has a positive effect on interest in using electronic money. This means that it is getting bigger perceived benefits will increase interest in using electronic money (Pratama & Suputra, 2019).

To find out the perception of public interest in the use of electronic money, further research is needed using the Technology Acceptance Model (TAM) Method. TAM is a technology acceptance model that can be used to determine a person’s perceptions of attitudes and behavior when using certain technologies. (Halim & Darma, 2019)

The price suitability variable is a variable that has a positive effect and the biggest significant to the variable using interest (Candra, 2013).

TAM is an information systems theory that models how users are willing to accept and use technology. This model proposes that when users are offered to use a new system, several factors influence their decisions about how and when to use the system, especially in terms of usefulness (users believe that using this system will improve their performance), ease of use (where the user believes that using this system will free him from difficulties, in the sense that the system is easy to use) (Utami, 2017).

Simultaneously, perceived usefulness and perceived ease of use have a significant effect on the interest in using the SAKUKU electronic money service. The relationship between perceived usefulness and interest is very strong. (Irianto, 2020). Perceived benefits partially have a significant effect on interest in using the SAKUKU electronic money service. The relationship between perceived ease of use and interest is very strong. The perceived ease of use partially has a significant effect on the interest in using the SAKUKU electronic money service (Kevin Anarjia, 2018).

Based on the table above, it shows that there is a significant influence between the use of debit cards and the use of electronic money (e-money) together on student consumption expenditures (F-count = 49.776 > F table = 3.072, p = 0.000 < α = 0.050). This shows that the simultaneous change in the use of debit cards and the use of electronic money (e-money) will significantly change student consumption expenditures (Ramadani, 2016).

Based on simultaneous testing (F test), perceived ease of use (X1), perceived usefulness (X2), and perceived risk (X3) have a significant effect on intention to use (Y) money Mandiri. Perceived ease of use (X1), perceived usefulness (X2), and perceived risk (X3) have a 32% effect on the intention to use (Y) of Mandiri e-money. Based on the partial test results (t-test), perceived ease of use (X1) has a significant effect on the intention to use (Y) of Mandiri e-money. Based on the partial test results (t-test), perceived usefulness (X2) has a significant effect on the intention to use (Y) of Mandiri e-money. Based on the partial test results (t-test), perceived risk (X3) has a significant effect on the intention to use (Y) of Mandiri e-money (Alza & Rikumah, 2019).

Electronic money services have provided benefits and ease of use, as can be seen from the categorization of respondents’ perceptions of the people of Semarang who consider electronic money services to provide benefits and convenience in high categorization assessments. Likewise with the categorization of risk perceptions according to respondents from the city of Semarang who gave low scores to risk perceptions. This means that electronic money services have provided convenience and provided various high benefits so that users will be more interested and willing to use electronic money services. Moreover, electronic money services have a low risk, this can be one of the considerations for someone to use electronic money services or not to use them (Priambodo & Prabawani, 2016).

Attitudes, perceived benefits, perceived ease of use, subjective norms, and perceptions of behavioral control influence interest in using e-money, while perceptions of performance risk, social risk, time risk, financial risk, and security risk do not show any influence on interest in using e-money. (Rahmatika & Fajar, 2019).

The perceived benefit variable has a significant effect on the interest in using e-money card products with a t value of 9.842 and a significance of 0.000 (less than 0.05) (Wibowo et al., 2015).

Factors consisting of benefits (X1), trust (X2), self-efficacy (X3), ease of use (X4), and security (X5) have a significant influence on consumer perceptions (Y) 58.3%. This result reflects that these five factors are considered important because become the reason consumers use e-money in Indonesia (Pratiwi & Dewi, 2018).

The better a person’s perceived usefulness users of the Mandiri E-Money electronic money card will also be increasingly interested in using it increased (Kusuma, Nuruni Ika. Izaak, Wilma C. Hardiyani, 2020).

From previous research, it is known that electronic money can be accepted as a legal
transaction tool and can be accepted by the public. However, it is necessary to know what are the reasons or factors that influence the real use of electronic money as a legal transaction tool and how the real use of e-commerce electronic money affects public transaction activities.

RESEARCH METHOD

1. **Research Design**

 The research steps must be carried out in stages so that the research can give results by the hypothesis. The following are the stages of the research design, namely:

 - Identification
 - Research Method
 - Research Instrument
 - SEM
 - Questionnaire
 - Questionnaire
 - Conclusion

 Figure 1. Research Design

 The first stage in the research is to identify the problem. Identification is carried out to formulate problems and analyze these problems. Then determine the research method taken using SEM. After that, design the research instrument and then create a questionnaire. After the questionnaire is complete, then distribute it to respondents. The results of the questionnaire were processed using the SEM method. Then get the results and conclude the study.

2. **Data Source**

 The research data comes from respondents who actively use electronic money as a means of payment.

3. **Stages of TAM Method**

 TAM consists of two main constructs, namely perceived use of use and perceived usefulness, which determine a person's intense behavioral intention to use technology. The actor's intensity is how much a person wants to take a certain action. Perceived usefulness and perceived ease of use influence behavioral intention, but not the other way around. The use of technology will have a behavioral intention to use technology (actor's interest) if the system or technology is useful and easy to use. If the system is very useful, easy to use, or not will still be used. The following is the TAM model:

 ![TAM Model](image)

 Figure 2. TAM Model

RESULT AND DISCUSSION

The specifications of the measurement model used are latent variables: CSE (Computer Self Efficacy), PU (Perceived Usefulness), PEOU (Perceived Easy of Use), ATU (Attitude Towards Using), IU (Intention to Use), and AU (Actual Usage). The Structural Model specification uses structural equations that state a causal relationship between various constructs by forming a measurement model for exogenous and endogenous latent variables.

1. PEOU is influenced by CSE
2. PU is influenced by PEOU and CSE
3. ATU is influenced by PU and PEOU
4. IU is influenced by ATU and PU
5. AU is influenced by IU

The following are the results of the CSE variable research (Computer Self Efficacy)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standardized Loading</th>
<th>Measurement Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 1</td>
<td>0.66</td>
<td>0.56</td>
</tr>
<tr>
<td>CSE 2</td>
<td>0.74</td>
<td>0.46</td>
</tr>
<tr>
<td>CSE 3</td>
<td>0.71</td>
<td>0.50</td>
</tr>
<tr>
<td>Total</td>
<td>2.11</td>
<td>1.52</td>
</tr>
</tbody>
</table>

\[
\text{Construct Reliability} = \frac{(\sum \text{std loading})^2}{(\sum \text{std loading})^2 + \sum \epsilon_j} \quad (1)
\]

\[
\text{Construct Reliability} \approx \frac{(2,11)^2}{(2,11)^2 + 1,52}
\]

\[
\text{Construct Reliability} = 0.75
\]

Table 1 calculations, shows that the value of Construct Reliability for the latent variable Computer Self Efficacy = 0.75. This indicates that...
the indicators in each construct are consistent in measuring the construct. The results of the research variable PU (Perceived Usefulness) can be seen in table 2.

Table 2 Construct Reliability PU (Perceived Usefulness)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standardized Loading</th>
<th>Measurement Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU_1</td>
<td>0.43</td>
<td>0.82</td>
</tr>
<tr>
<td>PU_2</td>
<td>0.71</td>
<td>0.50</td>
</tr>
<tr>
<td>PU_3</td>
<td>0.77</td>
<td>0.40</td>
</tr>
<tr>
<td>PU_4</td>
<td>0.77</td>
<td>0.41</td>
</tr>
<tr>
<td>Total</td>
<td>2.68</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Construct Reliability \[\frac{(\sum \text{std loading})^2}{(\sum \text{std loading})^2 + \sum \text{Error}^2} \] \[\text{(2)} \]

From the result of the calculation of table 1 above, it can be seen that the value of construct reliability for the latent variable computer self efficacy = 0.75. This shows that the indicators in each construct are consistent in measuring the construct. Results of research on the PEOU variable (Perceived Easy of Use) variables are shown in table 3.

Table 3 Construct Reliability PEOU (Perceived Easy of Use)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standardized Loading</th>
<th>Measurement Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEOU_1</td>
<td>0.75</td>
<td>0.44</td>
</tr>
<tr>
<td>PEOU_2</td>
<td>0.86</td>
<td>0.26</td>
</tr>
<tr>
<td>PEOU_3</td>
<td>0.44</td>
<td>0.80</td>
</tr>
<tr>
<td>PEOU_4</td>
<td>0.36</td>
<td>0.87</td>
</tr>
<tr>
<td>Total</td>
<td>2.41</td>
<td>2.37</td>
</tr>
</tbody>
</table>

Construct Reliability \[\frac{(\sum \text{std loading})^2}{(\sum \text{std loading})^2 + \sum \text{Error}^2} \] \[\text{(3)} \]

From table 3 calculations, it shows that the value of Construct Reliability for the latent variable Perceived Easy of Use = 0.71. This indicates that the indicators in each construct are consistent in measuring the construct.

The results of research on ATU variables (Attitude Towards Using) can be seen in table 4.

Table 4 Construct Reliability ATU (Attitude Towards Using)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standardized Loading</th>
<th>Measurement Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATU_1</td>
<td>0.69</td>
<td>0.53</td>
</tr>
<tr>
<td>ATU_2</td>
<td>0.56</td>
<td>0.69</td>
</tr>
<tr>
<td>ATU_3</td>
<td>0.40</td>
<td>0.84</td>
</tr>
<tr>
<td>ATU_4</td>
<td>0.39</td>
<td>0.85</td>
</tr>
<tr>
<td>Total</td>
<td>2.04</td>
<td>2.91</td>
</tr>
</tbody>
</table>

Construct Reliability \[\frac{(\sum \text{std loading})^2}{(\sum \text{std loading})^2 + \sum \text{Error}^2} \] \[\text{(4)} \]

From table 5 calculations, it shows that the value of Construct Reliability for the latent variable Intention to Use = 0.76. This indicates that the indicators in each construct are consistent in measuring the construct. The results of research on
the AU (Actual Usage) variable can be seen in Table 6.

Table 6 Construct Reliability AU (Actual Usage)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standardized Loading</th>
<th>Measurement Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU_1</td>
<td>0.57</td>
<td>0.68</td>
</tr>
<tr>
<td>AU_2</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>1.57</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Construct Reliability \(\frac{(\sum \text{std loading})^2}{(\sum \text{std loading})^2 + \sum \varepsilon_j^2} \) \(-\) (6)

Construct Reliability \(= \frac{(1.57)^2}{(1.57)^2 + 0.68} \)

Construct Reliability = 0.78

From the calculations above, it shows that the value of Construct Reliability for the latent variable Actual Usage = 0.78. This indicates that the indicators in each construct are consistent in measuring the construct.

Following are the results of the final TAM model, namely:

![Figure 3. Result Research](image)

The result is that there is a positive and significant effect of Perceived Usefulness on Attitude Towards Using, There is a positive and significant effect of Perceived Usefulness on Intention to Use, There is a positive and significant influence on Attitude Towards Using on Intention to Use and There is a positive and significant influence on Intention to Use on Actual Usage.

CONCLUSIONS AND SUGGESTIONS

Conclusion

The use of electronic money can be accepted by the public as a legal means of payment. There is a positive and significant effect of Perceived Usefulness on Attitude Towards Using, There is a positive and significant influence of Perceived Usefulness on Intention to Use, There is a positive and significant influence on Attitude Towards Using on Intention to Use and There is a positive and significant influence on Intention to Use on Actual Usage.

Suggestion

Research can also be used by adding other research constructs and with a varied number of respondents and specific types of electronic money.

REFERENCE

Ciptaan disebarkan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.