
JURNAL RISET INFORMATIKA
Vol. 2, No. 4 September 2020

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v2i4.121

193

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

INSERTING MESSAGE SECRET ON FILE DATA BANK USING
STEGANOGRAPHY ENGINEERING WITH EOF (END OF FILE) METHOD

Michael Sitorus1, Deki Satria2

Department of Information System1, Departement of System and Information Technology2

Institute of Technology and Business Bank Rakyat Indonesia (BRI Institute)1,2
michael.sitorus@bri-institute.ac.id1, deki.satria@bri-institute.ac.id2

Abstrak
Dalam pertukaran informasi tidak disadari ada informasi yang penting. Sering beredar informasi yang
penting tapi dianggap tidak penting seperti informasi rekening nasabah bank. Ancaman keamanan terhadap
informasi cukup banyak seperti interruption, interception, modifikasi, dan fabrication. Banyak pencurian
data informasi oleh pihak yang tidak bertanggungjawab. Penelitian ini bertujuan untuk mengamankan data
informasi berupa file citra digital yang akan disisipkan pesan rahasia dengan membangun aplikasi untuk
sistem keamanan pesan rahasia di Bank dengan menerapkan steganografi menggunakan metode End Of File
(EOF). Aplikasi Steganografi yang mampu menyisipkan pesan rahasia pada data file citra digital. Hasil
penelitian ini adalah mampu merahasiakan keberadaan dari sebuah pesan tersembunyi. Ketika orang lain
yang menerima file gambar, mereka hanya dapat melihat gambar saja secara kasat mata. Jadi semua pesan
tidak terlihat dan tidak akan dapat terbaca oleh hacker atau orang lain sebelum mengetahui sisi
keamanannya dan password untuk membuka atau membaca pesan rahasianya.

Kata kunci: Steganografi, End Of File (EOF), Citra Digital, Keamanan, Bank, Hacker

Abstract
Exchanging information does not realize that is important information. Circulates often important
information insignificant but such as account bank customer information. The threat of security to
information such as interruption, interception, modification, and fabrication. Thefts of information data by
irresponsible parties. This research aims to secure information data in the form file digital image to be
inserted with a secret message on building application for a secret message security system in the Bank
with applying steganography using the End Of File (EOF) method. Steganography application capable of
inserting secret messages in digital image data files. The results of the research can keep the existence of
the message hidden. When other people receive image files, they can only see the images with the naked
eye. So all messages are invisible and will not be read for hackers or other people before knowing the
security side and open of password or reading the secret message.

Keywords: Steganography, End Of File (EOF), Digital Image, Security, Bank, Hacker

INTRODUCTION

A lot of people do not know that data theft is
a threat and easy to do. Therefore peoples tend to
send their data unsafely through the internet. Data
shared on the internet, usually public, can be
accessed anywhere, anytime, and in any size
without looking at its importance.

Bank, as a business entity, should follow the
advancement of technology. Therefore data
integration became one of the primary concerns in
their daily activity. The data need to be integrated,
such as client data, business data, and other critical
data. These vital data can be in picture format
(Sa’adah & Purqon, 2016). There was a lot of
secrets data that need to be encrypted or hide. The

business could use steganography as a way to
obscure private data.

Steganography is an art and science about
hiding messages into a media such as pictures and
sounds. Therefore no one knows about the data
hidden in the media except the sender and receiver
(Nurmaesah et al., 2018)(Sitorus, 2015a).

There were two crucial things needed to
implement steganography. They are the message
and the media itself. Steganography is used to
obscure the private data and protect the data
(Sitorus, 2015b). The media used to obscure the
data won’t be changed; therefore, the media will
look the same before and after the process (Ariyus,
2009).

http://creativecommons.org/licenses/by-nc/4.0/

P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v2i4.121

JURNAL RISET INFORMATIKA
Vol. 2, No. 4 September 2020

194

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

RESEARCH METHOD

 This research using steganography. We can
identify excess bit using this method implicitly by
forecasting or explicitly using a calculation. We can
use this excesses bit to hide our private message in
the file.
There were four Steganography Algorithm widely
used, which are: 1) Least Significant Bit (LSB); 2)
End of File (EOF); 3) Domain Transformation; and
4) Spread Spectrum Encoding.
 Previous research in this area conducted
using the EOF method and Caesar chipper to
encrypt data into the file. The application
developed based on how substitution work on the
Caesar Chipper method to conduct the encryption
and EOF to add the message in the end bit of the
file (Indriyono, 2016).
 Before EOF come to light, the LSB Algorithm
was widely used by the researcher. But the main
downside of LSB is when the private/hidden
message was larger than the container file. This
problem made the steganography impossible to
conduct. In EOF methods, the hidden message got
special marking at the end of the file as an
identifier (Anggraini & Sakti, 2014). We can use
this algorithm or technique to hide messages
without changing the file size (Masri et al., 2019).
Research Time and Place

This research was conducted in BRI Pasar
Minggu and BRI Institute in August 2020.

Research Population and Samples

The population of this research is the staff of
BRI Pasar Minggu and the BRI Institute. The details
of Population and Sample is:
a. The population is all the staff of BRI Pasar

Minggu and BRI Institute. The total staff is ten
people.

b. The sample is part of the population we
consider to be able to represent the population.
The sample was chosen using random
sampling. In this research, we used five files
with a different extension.

Research Plan
 This research tried to develop an
application that will add a hidden or private
message into an image file. This research is a
randomized pretest-posttest control group design.
We use SDLC Waterfall as Development Methods.
The Waterfall model steps can be seen in Figure 1.

Figure 1. Waterfall Model

1) Analysis

In this step, the user requirement analysis step
we conducted. This step was important because
we can find what the user needs is. The
problem we tried to solve in this research was
how to add a hidden message in the image file
using JPG, GIF, and BMP extension. EOF Method
was used to solve this problem.

2) Plan
In this step, we tried to solve the problems
found in the analysis step. In this step, we made
the development model using UML. The models
are based on the result of requirement analysis.

3) Model Development
In this step, we will create the UI mockup of the
system based on the analysis result.

4) Coding
The coding process can be seen as a translation
from human language to computer language.
This is the main process of software
development, where the programmer
implements the analysis result in the
application.

5) Testing
Test steps were conducted to check whether
the implementation met the user expectation.
This step was also conducted to make sure
there were no errors in the coding.

Data Gathering Methods

We use qualitative methods to gather data,
such as interview, observation Focus Group
Discussion (FGD), and Document

RESULT AND DISCUSSION

A. Analysis

We can use steganography to hide data and
enhance the hidden capability of the message
(Anindyawati & Suryani, 2012). From the analysis
result, we found that EOF is the best method in this
case. EOF won’t increase the file size event when
we add hidden text messages in the fie. This EOF
methods add a special identifier at the end of the

http://creativecommons.org/licenses/by-nc/4.0/

JURNAL RISET INFORMATIKA
Vol. 2, No. 4 September 2020

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v2i4.121

195

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

image file as a data header in the file and Flag at
the end of the file.

B. Planning

System planning needs to have steps that
focused on design programs or software, including
data structure, software architecture, interface,
and code procedure (Nasution et al., 2017). We
used UML to design the software model. We use
three UML models, which are Use Case Diagram,
Activity Diagram, and Sequence Diagram.

1. Use Case Diagram

The use case diagram represents how the
user will use the system as an actor. The use case
of this system can be seen in Figure 2.

Figure 2. Use Case Diagram

In figure 2, users login to the main page to
use the application as intended by the user. On the
main page, the user can hide the message to the
image file, opening the hidden message in the
image file, reading the user guide, and log out from
the system.

2. Activity Diagram

Activity diagram show activity in the system in
the form of action set, how each action is executed,
decision, and how the action end (Suendri, 2018).
Activity diagram show workflow or activity or
business process of the system (Hendini, 2016).
Activity Diagram eases the analysis step to
determine the activity that needs to be executed.
The activity diagram of this application can be seen
in figure 3. The activity starts with choosing the
image that will become the main file. The next step
is to choose “stego image” and insert the password

for the hidden message; next, the user inserts the
hidden message and then clicking insert to
combine the image file and message.

Figure 3. Activity Diagram Text Message Insertion

Figure 4 shows that the insertion of the

hidden message starts from click “Penyisipan”.
After that, the user clicks “Stego Image” and enter
the password for the message. Stego image is a
process to insert a message into the image file.
“Sisipkan” use to execute image and data file
combinations.

Figure 4. Activity Diagram Data File Insertion

3. Sequence Diagram

Sequence Diagram is a popular tool in
software development, especially in the OOP
(Object Oriented Programming) approach. The
analyst used this diagram to show how objects
interacted in the system in some timeline
(Heriyanto, 2018),(Novita & Sari, 2015).

http://creativecommons.org/licenses/by-nc/4.0/

P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v2i4.121

JURNAL RISET INFORMATIKA
Vol. 2, No. 4 September 2020

196

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

Figure 5. Sequence Diagram Text Message

Insertion

 Figure 5 explains text insertion, where the
process started from choosing the main image file
as the message container. There will be informed if
the file has been used as a container from another
steganography process. The next step user will
choose “Stego Image” to insert the message and
password.

Figure 6. Sequence Diagram Data File Insertion

Figure 6 shows data file insertion where the

process starts from choosing the image as a
message container. This step will also check if the
container image has been used as a container
before, and the message will be added.

C. Development

The result of this research was an
application that could be used to add a message to

a file. The UI of these apps is divided into five main
menus with a specific function. The UI can be seen
in figure 7.
1. Main page: this page will show all the

functionality of the system.
2. Insert: in this menu, there was a button to

insert the message into the image file. The
hidden message in text form. Insert button to
choose hidden message file in docs extension
(doc, Docx, pdf, Xls)

3. Extraction: in this menu, there was an
extraction button to extract hidden text
messages and file extraction to open secret
documents.

4. User Guide: Users will use this menu when they
need the user guide of the application.

5. Profile: in this menu, the user can see the
information about the steganography and
author button to show information about the
author.

Figure 7. Home page design

Figure 8 shows the UI design for text

message insertion. On this page, there were Master
Image Text Book and Stego Image, which used to
display data in folders. Message Text Box used to
write the message, and Password Text Box used to
insert the password. The insertion process is
executed if all text box filled correctly.

Figure 8.UI Design for message Insertion

In the text message insertion from above, four

buttons have different functions:

http://creativecommons.org/licenses/by-nc/4.0/

JURNAL RISET INFORMATIKA
Vol. 2, No. 4 September 2020

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v2i4.121

197

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

In figure 8, there were four buttons which
are:
1. Select the button to select the image from the

directory in the computer
2. Select the button in the “Stego Image” used to

choose the image as the output.
3. Insert Button used to insert a hidden message

and execute the steganography process.
4. Exit Button to close the systems.

Figure 9 shows UI for document insertion.
The first frame is Image Frame to show real Image
File and Stego Frame to show manipulated image.
There were also Text Boxes in the Stego Image and
Real Image, which used to display data in the
folder. Data File Text box used to show data in the
folder, Password Text Box used to enter the
password. The steganography process is executed
if all the box filled.

In the insertion form, there were five
buttons which are:
1. Select the button to choose an image from the

computer.
2. Select Button in the Stego Image Button to

select an image as output.
3. Select buttons in the data file used to choose

the file to be inserted into the main image.
4. Insert Button used to execute the

steganography.
5. Exit Button to exit the process.

Figure 9. UI Design Insertion

In Figure 10, is the interface design of the

message extract form in the form of a text message.
There is a text box on the Stego Image to display
data from the folder, the text box on the password
is used to enter the password, the Message Text
box is to display a secret message. The extraction
process can be done when the Stego Image and
Password text boxes have been filled in. Figure 10
shows the UI design for the message extraction
form. There was a text box in the stego image to
display the data from the directory, a password

text box to show the password of the message, and
a message text box to display the hidden message.
The extraction process executed if all the text box
filled
1. “Select” button in the stego image form used to

take the manipulated image from the directory.
2. The “Extract” button is used to extract the

hidden message from the file.
3. Exit Button to exit the Form

Figure 10. UI Design for Extraction

Figure 11 shows the design of the message

extraction form in document format. There were
text boxes to display data from directory, text box
to display password, and a frame to display the
stego image. The extraction executes if all the form
is filled.

Figure 11. File Extraction UI Design

In this design, there were three buttons,

which are:
1. “Select” Button in Stego Image to select the

image from the computer directory
2. “Extract” button to process the extraction

process.
3. “Exit” button to close the form.

D. Coding

This process was the implementation
process where the design was translated into
software code. The code is displayed below.

http://creativecommons.org/licenses/by-nc/4.0/

P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v2i4.121

JURNAL RISET INFORMATIKA
Vol. 2, No. 4 September 2020

198

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

// encrypt text messages

if(features== UEM || features== CEM){

Cipher cipher= Cipher.getInstance("DES");

SecretKeySpec spec= new

SecretKeySpec(password.substring(0,

8).getBytes(), "DES");

cipher.init(Cipher.ENCRYPT_MODE, spec);

messageArray= cipher.doFinal(messageArray);

messageSize= messageArray.length;

}

// converts 32-bit message size into byte

array

tempByte= new byte[4];

for(i=24, j=0; i>=0; i-=8, j++)

{

tempInt= messageSize;

tempInt>>= i;

tempInt&= 0x000000FF;

tempByte[j]= (byte) tempInt;

}

//put 4 bytes messageSize array into master

file

writeBytes(tempByte);

// insert message

writeBytes(messageArray);

DataOutputStream out= new

DataOutputStream(new FileOutputStream(outputFile));

out.write(byteArrayOut,0,byteArrayOut.length);

byteOut.writeTo(out);

out.close();

{ catch(EOFException e) }

{ catch(Exception e) }

message= "Oops!!\nError: "+ e.toString();

e.printStackTrace();

return false;

message= "Sukses menyisipkan dalam '"+

outputFile.getName()+ "'.";

return true;

// insert data file

public SteganoInformation(File file)

this.file= file;

isEster= false;

if(!file.exists())

{ starter= null;

 return; }

if(file.getName().equals("Sec#x&y"))

{ isEster= true;

 return; }

byteArray= new byte[(int) file.length()];

DataInputStream in= new DataInputStream(new

FileInputStream(file));

in.read(byteArray, 0, (int) file.length());

in.close();

{ catch(Exception e) }

starter= null;

return;

// get the length of the original file

name= new byte[4];

String fileName= file.getName();

String fileExtension=

fileName.substring(fileName.length()-3,

fileName.length());

if(fileExtension.equalsIgnoreCase("jpg"))

inputMarker= steganografi.OFFSET_JPG;

else f(fileExtension.equalsIgnoreCase("png"))

inputMarker= steganografi.OFFSET_PNG;

else

inputMarker= steganografi.OFFSET_GIF_BMP_TIF;

retrieveBytes(name, byteArray, inputMarker);

dataLength= 0;

for(i=24,j=0; i>=0; i-=8,j++){

temp= name[j];

temp&= 0x000000FF;

temp<<= i;

dataLength|= temp;}

inputMarker= dataLength;

if(dataLength<0 || dataLength>file.length()){

starter= "Invalid";

return; }

E. Testing
In this step, we check the implemented

modules, whether it met the requirement or not.
After that, we conduct a test to check the UI design,
whether it met the intended design or not
(Guntoro, 2020).

Figure 12. Steganography system UI

The test result from Figure 12 shows that

the UI/UX design met the requirements. The
interview and observation conducted to the BRI
staff show that they feel satisfied with the UI.

Figure 13.Message Insertion Form

The test result of Figure 13 shows there was a
message hidden in the file. We chose the file and
inserted the hidden message to test this form. If we
chose the image first and then added the message,
the system will display “Message been added”
automatically. If the system can not add the
message, the system will display “Message cant be
added” in the form, as shown in Figure 14. After all

http://creativecommons.org/licenses/by-nc/4.0/

JURNAL RISET INFORMATIKA
Vol. 2, No. 4 September 2020

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v2i4.121

199

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

the text boxes are filled, the system can execute the
algorithm. The result of the system was the same
file but with slightly larger file size.

Figure 14.File Insertion form UI

Figure 15. Extract Message Form UI

Figure 15, shows that we could only see the

hidden message through the form. The first step to
see the message is selecting the file with the
hidden message. Next, the user needs to insert the
password and click the extract button. The
prerequisite for the extraction is to make sure the
file has the hidden message.

Figure 16, shows that the user needs to
make sure the file has a hidden message. In this
figure, we test whether we can extract the message
or not.

Figure 16. Tampilan Form Ekstrak File

“Extract file” form has the same process as
the extracted message where the first step is
selecting the file, insert the password, and click
extract to see the hidden message.

CONCLUSION AND SUGGESTION

Conclusion
Steganography using EOF proved to be able

to insert a hidden message into an image file, could
display the hidden message for example for the
Banking process.

Suggestion
 For the next research, the EOF algorithm
can be combined with another algorithm, whether
to secure the data or the file. The user of the
system can be tested more broadly in another
conventional Bank.

REFERENCE

Anggraini, Y., & Sakti, D. V. S. Y. (2014). Penerapan

Steganografi Metode End Of File (EOF) dan
Enkripsi Metode Data Encryption Standard
(DES) Pada Aplikasi Pengamanan Data
Gambar Berbasis Java Programming.
Konferensi Nasional Sistem Informasi 2014,
1743.

Anindyawati, N., & Suryani, E. (2012).

Pembangunan Aplikasi Penyembunyian
Pesan Menggunakan Metode End Of File
(EOF) ke dalam Citra Digital Terhadap Pesan
yang Terenkripsi Dengan Algoritma RSA.

http://creativecommons.org/licenses/by-nc/4.0/

P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v2i4.121

JURNAL RISET INFORMATIKA
Vol. 2, No. 4 September 2020

200

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

ITSMART, 1(1), 5–12.
https://doi.org/https://doi.org/10.20961/it
smart.v1i1.576

Ariyus, D. (2009). Keamanan Multimedia. Andi

Publisher.

Guntoro. (2020). Metode Waterfall. Materi Kuliah

SI.

Hendini, A. (2016). Pemodelan UML Sistem

Informasi Monitoring Penjualan dan Stok
Barang (Studi Kasus: Distro Zhezha
Pontianak). Jurnal Khatulistiwa Informatika,
IV(2), 107–116.

Heriyanto, Y. (2018). Perancangan Sistem

Informasi Rental Mobil Berbasis Web Pada
PT. Apm Rent Car. Intra-Tech, 2(2), 64–77.

Indriyono, B. V. (2016). Implementasi Sistem

Keamanan File dengan Metode Steganografi
EOF dan Enkripsi Caesar Cipher. SISFO, 6(1).

Kristanto, A. (2004). Rekayasa Perangkat Lunak

(Konsep Dasar). In Gava Media (1st ed.). Gava
Media.

Masri, M., Masri, M., Widya, H., & Yuhendri, D.

(2019). Perancangan Aplikasi Penyisipan
Pesan Pada Pixel Citra Menggunakan Metode
End Of File. Journal of Electrical Technology,
4(3), 178–184.

Nasution, Y. R., Johar, A., & Coastera, F. F. (2017).

Aplikasi Penyembunyian Multimedia
Menggunakan Metode End Of File (EOF) dan
Huffman Coding. Jurnal Rekursif, 5(1).

Novita, R., & Sari, N. (2015). Sistem Informasi

Penjualan Pupuk Berbasis E-Commerce.
TEKNOIF, 3(2).

Nurmaesah, N., Lestari, T., & Retno Mariana, A.

(2018). APLIKASI STEGANOGRAFI UNTUK
MENYISIPKAN PESAN DALAM MEDIA IMAGE
| Nurmaesah | Jurnal TAM (Technology
Acceptance Model). Jurnal TAM (Technology
Acceptance Model) , 8(1), 13–17.
http://ojs.stmikpringsewu.ac.id/index.php/J
urnalTam/article/view/82

Sa’adah, N., & Purqon, A. (2016). Perbandingan

Hasil Deteksi Tepi Pada Citra Kanker
Payudara Dengan Menggunakan Metode
Canny Dan Metode Ant Colony Optimization
(ACO). Simposium Nasional Inovasi Dan
Pembelaran Sains (SNIPS 2016).

Sitorus, M. (2015a). Teknik Steganography Dengan

Metode Least Significant Bit (LSB). Jurnal
Ilmiah Fakultas Teknik LIMIT’S, 11(2), 54–59.
https://doi.org/10.13140/RG.2.2.14942.233
62

Sitorus, M. (2015b). Aplikasi Keamanan Data

Dengan Teknik Steganografi Menggunakan
Metode End Of File (EOF). Proceedings of the
1st Informatics Conference, 1(1).
https://doi.org/10.13140/RG.2.2.28364.006
43

Suendri. (2018). Implementasi Diagram UML

(Unified Modelling Language) Pada
Perancangan Sistem Informasi Remunerasi
Dosen Dengan Database Oracle (Studi Kasus:
UIN Sumatera Utara Medan). ALGORITMA:
Jurnal Ilmu Komputer Dan Informatika, 3(1).

http://creativecommons.org/licenses/by-nc/4.0/

